Indonesia. The purpose of this work is to develop a preliminary small-scale prototype design of an electrohydrodynamic-based grain drying device to dry rough rice. The design was developed and its performance was evaluated.

2. Materials and method

The prototype was designed to be simple without using any moving parts, easy to assemble, and portable. These three requirements were set considering the conditions of the smallholders in the field. The whole system consists of three parts, namely the power supply, high voltage generator, and the electrodes, as shown in Figure 1(a). Though generally there are two commonly used electrode designs, i.e. needle type and wire type, the scope of research in this work is limited to the needle-type corona generator.

The power drawn from the 12 V battery is then transformed by a high voltage generator into an adjustable voltage with the order of kilovolts. The high voltage generator consists of a flyback transformer driven by a circuit having a frequency of 12.5 kHz. The output voltage can be adjusted by a rotating dial. The dial is not linearly-scaled, meaning that lower voltage outputs will have a more accurate reading compared to higher voltage ones. The output voltage is adjustable. In this research, the output voltage is kept constant at 2.5 kV. Figure 1(b) below shows the photograph for the constructed system.

Finally, the output voltage is being fed to the third part, which is the multi-needle corona generator. The multi-needle electrodes, affixed in an upper plate, were suspended and made sure that the corona generated could cover the area beneath. Plate electrode was prepared and was connected to the ground. The specimen, prepared inside a petri dish, was placed on top of the plate electrode. The whole system was put inside a compact container made from an acrylic. Holes were made on the acrylic walls to ensure the heat from the specimen could be released to the surrounding.

The drying experiment was conducted with 50 g of rough rice. The specimen, i.e. rough rice, was soaked in water overnight until it reaches the moisture content of 30%. Two identical specimens were prepared, one was to be dried with the proposed EHD drying method in a room temperature of 26°C, whereas the other one was placed under the sun exposure with a recorded temperature of 33°C. The drying was done for one hour and the moisture content (MC) for both specimens were measured using a digital grain moisture meter TA-5. The formula for MC and its decrement, ΔMC are given in Equation (1) and (2).

\[
MC = \frac{W_{\text{wet sample}} - W_{\text{dry sample}}}{W_{\text{wet sample}}} \times 100\%
\]

\[
\Delta MC = MC_{\text{final}} - MC_{\text{start}}
\]

3. Results and discussion

As depicted in Figure 2, moisture content (MC) in plasma-treated rough rice in a room temperature of 26 °C decreased faster, that is from 30% to 25 %. As a comparison, rough rice which was exposed to sunlight at 12:00 PM with a temperature of 33 °C and humidity of 60%, underwent a decrement of moisture content from 30% to 29% during the same time interval. It can be inferred from the experimental data that a faster moisture content removal is caused by an increase in mass transfer rate by the corona wind of the EHD. The air ions coming from a small area around the needle point are accelerated by the applied electric force and colliding with the sample. Ions that hit the sample increase the mass transfer rate of the moisture through an increased turbulence. Moreover, the efficiency of the drying process also depends on the electrode configuration, with multi-needle configuration having the highest efficiency compared to wire and single electrode configuration. The direction of corona wind can be controlled by positioning the discharge and reception electrode. More needles/points also make a more even drying distribution.
Development of Small Scale Electrohydrodynamic Drying Device for Rough Rice Using DC Plasma Generator

Fig. 2: Comparison of moisture content decrement in different drying methods.

Similar results were also demonstrated by experiments conducted by Cao, et al.15 who performed rough rice drying by multi-needle-to-plate electrode configuration using multi-needle consisting of 16 needles, a voltage of 10-30 kV and a distance between electrodes of 35-55 mm. The drying rate on plasma treated samples were faster compared to control, and increased by about 1.16 times per 10 kV increase. The increase of the drying speed also increases 1.16 times for every 1 cm reduction of electrode distance. Another example is the drying of fungi by S. T. Dinani, et. al14 using multicondition-to-plate configurations, 17-21 kV voltages and 5-7 cm spacing between electrodes, in which voltage increase and reduction of the spacing between electrodes speed up the drying process. Increments on the drying speed of each reference are arguably different since each experiment uses different experimental and drying specimens.

Fig. 3: Thermal image of the EHD device and rough rice.

In addition to moisture content measurements, temperature measurements were also performed using DT-9887 thermal camera. The thermal image taken using the camera is shown in Figure 3. In Figure 3, it can be seen that the rough rice did not heat up during the drying process. The temperature measurements in Table 1 shows that each electrode experienced an increase in temperature compared to the ambient temperature of the room caused by current dissipation caused by the electric current during the drying process. The drying process does not result in a significant heating on the rough rice (20.5 °C), multi-needle electrode (23.3 °C), and plate electrode (22.2 °C). Therefore, it can be concluded that this device does not emit thermal energy, but rather a non-thermal one by utilizing ion jets5. Moreover, after measuring the power of EHD device, this device consumes low power energy, which is only 1.3 Watt for 50 grams per hour of rough rice. This power electricity is smaller than other method (150 Watt for 50 grams per hour)28.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough rice</td>
<td>20.5</td>
</tr>
<tr>
<td>Multinneedle electrode</td>
<td>23.3</td>
</tr>
<tr>
<td>Plate electrode</td>
<td>22.2</td>
</tr>
</tbody>
</table>

4. Conclusion

In this research, a design of electrohydrodynamic drying (EHD) device for drying rough rice is proposed. The EHD device is based on a DC plasma which is generated by a flyback transformer-based circuit with an output of 2.5 kV. The device was tested with multi-needle-to-plate electrode configuration with 1 cm distance between both electrodes and rough rice sample placed between the electrodes for an hour. The test result showed that the proposed device could reduce moisture ratio with a drying rate faster than that of the sun exposure. Power consumption of EHD device is only 1.3 Watt for 50 grams per hour. Moreover, the temperature of the EHD device is quite low, which is the temperature on the rough rice (20.5 °C), multi-needle electrode (23.3 °C), and plate electrode (22.2 °C). Therefore, the EHD device can safely be considered as non-thermal by utilizing ion jets.

Acknowledgements

This work has been supported in part by Research Grant 2019 “Penelitian Dasar Unggulan Perguruan Tinggi” from the Ministry of Technology Research and Higher Education of the Republic of Indonesia. The authors also acknowledge the support of the United States Agency for International Development (USAID) through the Sustainable Higher Education Research Alliance (SHERA) Program for Universitas Indonesia’s Scientific Modeling, Application, Research and Training for City-centered Innovation and Technology (SMART CITY) Project, Grant #AID-497-A-1600004, Sub Grant #IIE-00000078-UI-1.
References

