Industrial systems III: Project Management 2017
Yuichi Orimoto
Green Asia Assistant Professor, Green Asia Education Center

Industrial systems III: Project Management 2017
Lecturer: Yoshihide FUEDA (Section leader, Chiyoda Corporation)

- April 14 (Fri): Distance learning between Chikushi and Fukuoka (video-conference system)
 Unit 01. Orientation - Project Management (by Y. Fuda)
 Unit 02. Project organization and Team building (by Y. Fuda)
- May 19 (Fri): Chikushi
 Unit 03. Case study of project management (by H. Miyaoka and Y. Fuda)
 Unit 04. Scope definition and Work breakdown structure (by Y. Fuda)
- June 16 (Fri): Distance learning between Chikushi and Fukuoka (video-conference system)
 Unit 05 & 06. Project Control (by Y. Fuda)
- July 14 (Fri): Chikushi
 Unit 07. Actual project execution (by Y. Fuda)
 Unit 08. Case study for actual Project (by Y. Fuda)

Fifth Batch

Shinichiro Kojima
Applied Science for Electronics and Materials, M2

Kazuki Kuga
Energy and Environmental Engineering, M2

Kazuki Sawayama
Earth Resources Engineering, M2

Muhammad Anif Bin Mizan
Applied Science for Electronics and Materials, M2

I am doing lab rotation now. The content of lab rotation is about millimeter wave measurement and technology for plasma heating. In the main laboratory, I have been studying about X-ray measurement from plasma. Both of laboratory relate to nuclear fusion plasma. Heating is the base for nuclear fusion. Heating methods are roughly divided into 3 parts, such as ohmic heating, neutral particle injection, and radio frequency heating. In lab rotation, I am studying about the technology of radio frequency heating. In this technology, we can heat just only local point and a whole of plasma, and start-up plasma. I am studying the device for heating local point and the technology to start up plasma.

I selected Tanimoto laboratory which focus on a modeling of human behavior and epidemics for lab rotation because I am interested in the mathematical modeling of social network, although this research field is perfectly different from my research 'Computational Fluid Dynamics'. For reducing a risk of spread of infectious diseases, it is essentially important to develop predicting frameworks based on mathematical epidemic models such as SIR model dovetailed with evolutionary game theory, which has been called 'vaccination game'. In this study, I tried to develop a new model which can describe effects of imperfect vaccine. Now, I am focusing on summarizing my research results and writing my paper.

My name is Kazuki Sawayama, 2nd year student of master course in geothermics laboratory. I will briefly introduce my outcomes of two lab rotations.

My 1st lab rotation had done in Geophysics laboratory (Tsuiji sensei). Firstly, I created the digital rock from the roughness data of natural rock fracture. And then, from this digital rock, I calculated three-dimensional fluid flow in the rock fracture by Lattice Boltzmann Method (IBM). Finally, by using calculated flow result, resistivity of rock which contains fluid in its fracture was evaluated by Finite Element Method (FEM).

In the 2nd lab rotation, I did experiment and inversion analysis in Energy Resource Engineering laboratory (Tsuiji sensei). I developed resistivity measuring apparatus which can change the measurement points. By using this apparatus, effect of measurement points and water level on the resistivity of water saturated material was observed. Successively, I tried reproducing experimental results by inversion analysis.

Both lab rotations were very fruitful for my main research. I would like to take this opportunity to express my appreciation to both professors.

Lab rotation program is one of the program in Green Asia (GA) program which giving an opportunity for a student to gained extra knowledge either in their related field or non-related field. I am from Hattori’s Laboratory and my research study is based on the application of the Organic Light Emitting Diodes (OLEDs) and Organic Photovoltaics (OPVs) in the medical devices. Under the lab rotation program, I have joined the Hamamoto’s Laboratory and involved in the study of the cross talk occurrence in the combination of horizontal and vertical optical fibers structures.
Fifth Batch

I am Md Rauf Ul Karim Khan, from Bangladesh. I have been pursuing my master’s degree belongs to Advance Graduate Program in Global Strategy for Green Asia (GA Program), Kyushu University Since October, 2016. My major is Applied Science for Electronics and Materials (ASEM). I feel blessed to get an opportunity to do research in Hattori laboratory under supervision of Prof. Reiji HATTORI. In my laboratory, our research group is working on Thin Film Transistor. I have just completed my first master's course in my first year. Recently I have completed my first laboratory rotation in Okita Laboratory and this research is related to thermal conductivity measurement of thin film. This laboratory has enriched my knowledge about the method of experiment and various kinds of instruments. I have found my research very interesting in the field of thermal conductivity measurement of thin film. I have measured the thermal conductivity of IZO thin film under different temperature with Three Omega (3 a) method and characterized the transport properties such as Hall effect mobility, field effect mobility. Carrier Concentrations and XRD diffraction. I have presented this research in 3rd International Conference on Industrial, Mechanical, Electrical, Chemical Engineering which had held in Indonesia. I hope this research will keep very good impact in display technology. I am going to start my second laboratory rotation and practice school.

Under Green Asia curriculum, there are many opportunities to learn and do. Green has helped me to learn not only on my specialized subjects but also Philosophy, economic, social and environmental issues. I hope I can involve myself and do better work in future.

My name is Aditya Wibawa, almost a year since I join in Green Asia “time passes so quickly”. I’ve just spent one year of master program and completed course works. Also I did research about make coke from low rank coal. In the 3rd and 4th semesters, I have many activities From GA Like Lab rotation, practical school, and also QE presentations. in my main lab I have make a strong coke for steel smelting industry from low rank coal. The lab rotations related to my research, I decided I want to deep inside about my research. I have plans to use the DSC, HSMR and FTR equipment to know the existence of free water, bound water and non-freezeable water in briquettes and coke. the lab rotation I am sure will add to my knowledge and experience regarding my research thanks to GA for providing dynamic packages and providing opportunities for global challenges.

My name is Ramadan Aljamal from Palestine. Green Asia student, faculty of energy and environmental engineering. I work in environmental fluid science laboratory. In our laboratory we are working to improve the efficiency of Nano Scale Zero Valant Iron to remove the contaminants from drinking water and my research about “optimizing synthesis conditions of NZVI for water treatment in my research I want to control the synthesis conditions “reaction variables” to maximize the efficiency of NZVI. In addition, I conducted my Lab rotation in the department of mechanical engineering science graduate school of engineering, international institute for carbon-neutral energy research(JCNER) and I conducted several experiments related to my research. In these experiments, we investigated the impact of many parameters on NZVI particle size by measuring the particles using laser particle size analyzer. And also we measured the surface area using (BET surface area measurement) and we evaluated the Influential variables on NZVI surface area in this lab rotation. Besides that, I am planning to conduct my practical school about the application of NZVI for water treatment in the department of environmental engineering, national Taiwan University, Taiwan.

As part of the Green Asia program, to diversify ourselves in multiple and different fields of studies on top of our expertise. Lab rotation is one of these activities which allows us to explore and experience new ideas and different research fields of different labs across Kyoto University. I am currently doing my lab rotation in Hattori Laboratory orchestrated by Prof. Reiji Hattori in the newly launched Global Innovation Center (GIC) building. In this lab, they have many research themes of their own and also collaborating with companies and the industry for R&D purposes. Firstly, they are focusing on the development of devices and systems for the next generation display, and are engaged in R&D of flat panel displays as a major pillar industry of Japan. More specifically, their research work is related to Electronic paper and Organic light emitting display whereby they are challenging aggressively to develop a new display technology which the industry cannot challenge. In addition to all of this, they are conducting full research on organic electronics which are important when it comes to fabricating large-area and flexible displays. I am collaborating for a few months with a team of students working on a CPT/CQPT system for air drone charging station. I am working on the simulation part, observing, calculating and testing out the steady-state results of the system and other future given tasks if needed. Moreover, this is one of many ways of contactless or wireless power transfer readily available and in research and continuous development. In general, there are three main ways to realize contactless power transfer: electromagnetic radiation, (CPT/FCPT) Inductive Power Transfer and (CPT/FCPT) Capacitive Power Transfer. There have been a substantial number of research activities in developing contactless power transfer systems in the past few decades and in this lab, one of their themes is focused on this kind of technology and stretching its limit to countless real world applications which will benefit the society and moving towards a greener and sustainable environment.

My name is Ali Mohamed Ali Ebrahim Abdelgawad from Egypt. I have graduated from physics Dept., Faculty of Science, Al-Azhar University, Cairo, Egypt with bachelor in plasma physics as a special major. After this, I have been working as a teaching assistant at that University since April 2014 until September 2016. Now I am a master student at Dept of Applied science for Electronics and Materials Prof. Yoshihata Lab. Diamond Group Kyushu University Japan from Oct (2016). I am working on the preparation of ultra-nanocrystalline diamond (UNCD) by coaxial arc plasma system and related equipment application in hard coating for cutting tools. where Diamond has many excellent properties such as the highest hardness, high chemical inertness, low friction coefficient and high optical transparency and thus it is expected for a variety of applications. In addition, it overcomes ecological and resources problems. UNCD is also expected as a candidate for coating and heat sink, because it is easy to be grown and it has a smooth surface like DLC, and because it is stable for temperature and has high heat conductivity similarly to diamond. UNCD films have been grown by using a coaxial arc plasma gun with substrate negative bias voltage. I am trying to study the physical characteristics of the films and the effect of different substrate negative bias voltage on the film nucleation. Also, the plasma behavior and the added atom energy play an important role in the film properties. Therefore, it is essential to study the optical characterization of the cathodic arc plasma system, estimate the electron density and plasma temperature at the preparation conditions of the UNCD/aC films. All this activities and information was overring to me by Green Asia program. I hope that to have more improvement and get more experience in that research field under GA cover. I would like to express my gratitude to Green Asia program. I am grateful to all people who helped and supported researcher and youth aspirations to build a better future for all.
Fifth Batch

I am Md Rauf UI Karim, from Bangladesh. I have been pursuing my master's degree belongs to Advance Graduate Program in Global Strategy for Green Asia (GA Program). Kyushu University Since October, 2016. My major is Applied Science for Electronics and Materials (ASEM). I feel blessed to get an opportunity to do research in Hattori laboratory under supervision of Prof. Reji HATTORI. In my laboratory, our research group is working on Thin Film Transistor and Display Technology. I have just completed my first laboratory rotation in Okita Laboratory and this research is related to thermal conductivity measurement of thin film. This laboratory rotation has enriched my knowledge about the method of experiment and various kinds of equipment. I have found my research very interesting in the field of Thermal conductivity measurement of thin film. I have measured the thermal conductivity of ITO thin film under different temperature with Three Omega (3 α) method and characterized the transport properties such as Hall effect mobility, field effect mobility, Carrier Concentrations and XRD diffraction. I have presented this research in 3rd International Conference on Industrial, Mechanical, Electrical, Chemical Engineering which had held in Indonesia. I hope this research will keep very good impact in display technology. I am going to start my second laboratory rotation and practice school. Under Green Asia curriculum, there are many opportunities to learn and do. Green has helped me to learn not only on my specialized subjects but also Philosophy, economic, social and environmental issues. I hope I can involve myself and do better work in future.

My name is Aditya Wibawa, almost a year since I join in Green Asia “time passes so quickly”. I’ve just spent one year of master program and completed course works. Also I did research about make coke from low rank coal. In the 3rd and 4th semesters, I have many activities From GA Like Lab rotation, practical school, and also QE presentations. in my main lab I have make a strong coke for steel smelting industry from low rank coal. the lab rotations related to my research, I decided I want to deep inside about my research. I have plans to use the DSC, HNMR and FTIR equipment to know the existence of free water, bound water and non-freezable water in briquettes and coke. the lab this rotation I am sure will add to my knowledge and experience regarding my research thanks to GA for providing dynamic packages and providing opportunities for global challenges.

My name is Ramadan Aljammal from Palestine. Green Asia student, faculty of energy and environmental engineering. I work in environmental fluid science laboratory. In our laboratory we are working to improve the efficiency of Nano Scale Zero Valant Iron to remove the contaminants from drinking water and my research about “optimizing synthesis conditions of NZVI for water treatment in my research I want to control the synthesis conditions "reaction variables" to maximize the efficiency of NZVI. In addition, I conducted my Lab rotation in the department of mechanical engineering science graduate school of engineering, international institute for carbon-neutral energy research(JCNER) and I conducted several experiments related to my research. In these experiments, we investigated the impact of many parameters on NZVI particle size by measuring the particles using laser particle size analyzer. And also we measured the surface area using (BET surface area measurement) and we evaluated the Influential variables on NZVI surface area in this lab rotation. Besides that, I am planning to conduct my practical school about the application of NZVI for water treatment in the department of environmental engineering, national Taiwan University, Taiwan.

As part of the Green Asia program, to diversify ourselves in multiple and different fields of studies on top of our expertise. Lab rotation is one of these activities which allows us to explore and experience new ideas and different research fields of different labs across Kyushu University. I am currently doing my lab rotation in Hattori Laboratory orchestrated by Prof. Reji Hattori in the newly launched Global Innovation Center (GIC) building. In this lab, they have many research themes of their own and some collaborating with companies and the industry for R&D purposes. Firstly, they are focusing on the development of devices and systems for the next generation display, and are engaged in R&D of flat panel displays as a major pillar industry of Japan. More specifically, their research work is related to Electronic paper and Organic light emitting display whereby they are challenging aggressively to develop a new display technology which the industry cannot challenge. In addition to all of this, they are conducting full research on organic electronics which are important when it comes to fabricating large-area and flexible displays. I am collaborating for few months with a team of students working on a CPT/CQPT system for air dielectric charging station. I am working on the simulation part, observing, calculating and testing out the steady-state results of the system and other future given tasks if needed. Moreover, this is one of many ways of contactless or wireless power transfer readily available and in research and continuous development. In general, there are three main ways to realize contactless power transfer, electromagnetic radiation, (IPT/ICPT) Inductive Power Transfer and (CPT/CQPT) Capacitive Power Transfer. There have been a substantial number of research activities in developing contactless power transfer systems in the past few decades and in this lab, one of their themes is focused on this kind of technology and stretching its limit to countless real world applications which will benefit the society and moving towards a greener and sustainable environment.

My name is Ali Mohamed Ali Ebrahim Abdelgawad from Egypt. I have graduated from physics Dept., Faculty of Science, Al-Azhar University. Cairo, Egypt with bachelor in plasma physics as a special major. After this, I have been working as a teaching assistant at that University since April 2014 until September 2016. Now I am a master student at Dept. of Applied science for Electronics and Materials Prof. Yoshitake Lab. Diamond Group Khushy University – Japan from Oct (2016). I am working on the preparation of ultra-nanocrystalline diamond (UNCD) by coaxial arc plasma system and related application in hard coating for cutting tools. where Diamond has many excellent properties such as the highest hardness, high chemical resistance, low friction coefficient and high optical transparency and thus it is expected for a variety of applications. In addition, it overcomes ecological and resources problems. UNCD is also expected as a candidate for coating and heat sink, because it is easy to be grown and it has a smooth surface like DLC, and because it is stable for temperature and has high heat conductivity similarly to diamond. UNCD films have been grown by using a coaxial arc plasma gun with substrate negative bias voltage. I am trying to study the physical characteristics of the films and the effect of different substrate negative bias voltage on the film raceleation. Also, the plasma behavior and the added atom energy play an important role in the film properties. Therefore, it is essential to study the optical characterization of the cathodic arc plasma system, estimate the electron density and plasma temperature at the preparation conditions of the UNCD/a C films. All this activities and information was overing to me by Green Asia program. I hope that to have more improvement and get more experience in that research field under GA cover. I would like to express my gratitude to Green Asia program. I am grateful to all people who helped and supported researcher and youth aspirations to build a better future for all.
Fifth Batch

It has been a year since I’ve been joining Green Asia program as a master’s student, and I belong to Harata Laboratory majoring in Molecular and Material Sciences. My research is focusing on the adsorption system where the heat released during the process is very crucial in order to get high thermal performance of the system. Previously, GA requires all students to participate in two lab rotations for passing the QE, however, recently, GA has introduced new gate system where lab rotation can be done within 3 months or more. I am now doing the lab rotation in Saha Laboratory, I2CNER in Ito Campus. In this lab rotation, I have used the Control Volume Variable Pressure (CVPV) experimental machine in order to measure uptake with different adsorbent and adsorbate. This will be useful in preparing my thesis with validation from experimental result. As a next step, I will be participating in I2CIES 2017 conference on 20th October as a presenter and looking forward to publish one journal paper in Applied Thermal Energy.

This is Shun Wu, a master student of MMS. My professor focuses on the biomaterial and biomechanics. Currently, my research is concentrating on the stability of the femoral stem and the effect of stem design on the mechanical behavior after THA simulated by FEM method. As time flies, I have been living in Japan almost a whole year. In a past year, I have experienced so many exciting lectures, communication and events organized by GA program. From 20th August to 15th September this year, I participated in a wonderful internship in a Japanese medical device company in Prefecture Okayama. The research I did during the internship, which is related to my current research, would be able to instruct and improve my future work on this research. Moreover, I have learnt extra but smart technique on data processing and, more importantly, a lot of practical manipulation on mechanical experiment of femoral stem that I could not contact to them in the college. In the coming new semester, I can’t wait to apply the experience accumulated in the internship to advance the modelling process a lot in my research and expect what would happen after that. Would this transformation deserve to write a paper? I don’t know but I look forward to it.

Lab Rotation (LR) is good chance to conduct a research in wider scale, in addition to being essential to pass qualification exam of GA program. Learning in different lab has same importance of main lab which learning new instruments and acquiring new knowledge of different major. My research topic is catalytic activity of Nanowires (NWs) which requires two different labs. I do my research mainly at prof. Yanagida Lab where mastering nanowires fabrication as a catalyst. Then planning to join Prof. Enaqua lab where analyzing fabricated nanowires structure by (TEM) Transmission electron microscopy, gaining meaning set of experiments of catalytic effect of interface by using micro reactor. Furthermore, I got another chance, summer 2017, to learn in other lab about optic-acoustic properties of Perovskites nanowires at LMU University in Germany.

Catalysis is a little complicated process, which required knowledge in more than one discipline, and this will not done without LR. Catalyst fabrication has been done successfully this year at main lab, targeting the interface between (MgO) NWs &(CeO₂) Nanoparticle which its structure is accepted by International Exchange and Innovation Conference on Engineering & Sciences (I2CIES 2017). I feel optimistic to start next step, later on, of examination of catalytic effect of fabricated NWs.

When someone heard laboratory work, mostly everyone will get bored. But not for Green Asia students. When the times to do the laboratory rotation comes, it is not always a good feeling. The feeling of pressure for making a report, nervous in front of new friends and laboratory professor. However, it is wrong. Everything feels excited and challenging. In my case, I do the laboratory rotation in Economic Geology Laboratory supervised by Yonezawa Sensei. In his laboratory, I studied to use the LA-ICP-MS apparatus. This machine is an advanced analytical method to analyze elemental contents of the solid sample. The sample was introduced into the apparatus by ablating the surface of the solid sample without any complicated treatment.

This experience successfully opens many possibilities to improve and support my ongoing research.

I am enrolled in my Master course in Energy and Environmental Engineering Department. As a GA course requirement I have to conduct research in different laboratories in addition to my main laboratory. In this regard, I started my first lab rotation at Ito Research Group, Public Health and Environmental Engineering under the supervision of Prof. Kihide Ito. My research is on development of honeycomb absorber solar air heating system. In the mentioned lab, I simulated the honeycomb absorber solar air heater (SAH) using Ansys Fluent simulation software, where I observed the heat transfer and flow characteristics in the SAH. Flow pattern, turbulence, heat transfer, mass transfer, effect of irradiation etc. will be analyzed to enhance the performance of the SAH. Based on the simulation result I will then modify the design of SAH for optimum performance.

I am very much grateful to Ito Sensei and members of his lab and also GA Education Center for giving me this opportunity. This lab rotation activity will surely pose a great impact for enhancement of my knowledge in various research fields.

Hi, I am Ibrahim MA Maamoun, from Egypt. Currently I am enrolled in Green Asia (GA) program as a second year master student at Kyushu University. I have graduated from Al-Azhar University in Egypt and I still hold my position back there as a university demonstrator. As part of GA activities required to fulfill the credits for QE, I went for lab rotation at Saha’s Lab at I2CNER under supervision of Saha Sensei. The main activities I conduct there are doing some measurements on different devices to investigate the characteristics of the materials I have used in my research including particle size and specific surface area. In addition, I take some measurements of specific heat capacity values for different reactive materials in order to find a relation between the heat capacity and the reactivity. As well as, visiting new lab with different research interests gave me the opportunity to communicate with the researchers there and gain more experience with the help of them. Finally, I can say that such activities in GA program such like lab rotation represents a great opportunity for all students to gain more knowledge in their research field or even in different topics.
Fifth Batch

It has been a year since I’ve been joining Green Asia program as a master’s student, and I belong to Harata Laboratory majoring in Molecular and Material Sciences. My research is focusing on the adsorption system where the heat released during the process is very crucial in order to get high thermal performance of the system. Previously, GA requires all students to participate in two lab rotations for passing the QE. However, recently, GA has introduced new gate system where lab rotation can be done within 3 months or more. I am now doing the lab rotation in Saha Laboratory, I2CNER in Ino Campus. In this lab rotation, I have used the Control Valve Variable Pressure (CVVP) experimental machine in order to measure uptake with different adsorbent and adsorbate. This will be useful in studying the effects with validation from experimental result. As a next step, I will be participating in I2CES 2017 conference on 20th October as a presenter and looking forward to publish one journal paper in Applied Thermal Energy.

This is Shun Wu, a master student of MMS. My professor focuses on the biomaterial and biomechanics. Currently, my research is concentrating on the stability of the femoral stem and the effect of stem design on the mechanical behavior after THA simulated by FEM method. As time goes by, I have been living in Japan almost a whole year. In a past year, I have experienced so many exciting lectures, communication and events organized by GA program. From 20th August to 15th September this year, I participated in a wonderful internship in a Japanese medical device company in Prefecture Okayama. The research I did during the internship, which is related to my current research, would be able to instruct and improve my future work on this research. Moreover, I have learnt extra but smart technique on data processing and more importantly, a lot of practical manipulation on mechanical experiment of femoral stem that I could not contact to them in the college. In the coming new semester, I can’t wait to apply the experience accumulated in the internship to advance the modelling process a lot in my research and expect what would happen after that. Would this transformation deserve to write a paper? I don’t know but I look forward to it.

Green Asia (GA) is very impressive program. It gives chance to their students to learn and aware about global environment by participation in different activities. I am Sameh Okasha, Bachelor of chemical engineering, Cairo university from Egypt. From last year I got an opportunity to study in Japan at Prof. Yanagiya lab, molecular and Material science. I started my master degree to research in catalytic activity of Nanowires. GA has interesting activities such like industrial system and practical school. This year, I did an industrial system trip in Taiwan (National Sun-yat sen university) where different presentations by professionals. Furthermore, visiting mega solar power plant and Mitsubishi museum. In addition to getting project management course by Chiyoda company as part of industrial system course. While in practical school, I got a chance to do extra research in acoustic optical-properties of Nanowires in Germany as part of Ludwig Maximilian university.

All of these activities in first year wouldn’t performed without direct support of Green Asia program. I become eager and exciting to start any kind of activity from it. I feel optimistic to start my 2nd year with the last required activity for qualification exam of lab rotation where performing sets of experiments of Catalytic activity of Nanowires after mastering their fabrication.

When someone heard laboratory work, mostly everyone will get bored. But not for Green Asia students. When the times to do the laboratory rotation comes, it is not always a good feeling. The feeling of pressure for making a report, nervous in front of new friends and laboratory professor. However, it is wrong. Everything feels excited and challenging. In my case, I do the laboratory rotation in Economic Geology Laboratory supervised by Yonezi Sensei. In his laboratory, I studied to use the LA-ICP-MS apparatus. This machine is an advanced analytical method to analyze elemental contents of the solid sample. The sample was introduced into the apparatus by ablating the surface of the solid sample without any complicated treatment. This experience successfully opens many possibilities to improve and support my ongoing research.

I am enrolled in my Master course in Energy and Environmental Engineering department. As a GA course requirement I have to conduct research in different laboratories in addition to my main laboratory. In this regard, I started my first lab rotation at Ito Research Group, Public Health and Environmental Engineering under the supervision of Prof. Kanhide Ito. My research is on development of honeycomb absorber solar air heating system. In the mentioned lab, I simulated the honeycomb absorber solar air heater (SAH) using Ansys Fluent simulation software, where I observed the heat transfer and flow characteristics in the SAH. Flow pattern, turbulence, heat transfer, mass transfer, effect of irradiation etc. will be analyzed to enhance the performance of the SAH. Based on the simulation result I will then modify the design of SAH for optimum performance.

I am very much grateful to Ito Sensei and members of his lab and also GA Education Center for giving me this opportunity. This lab rotation activity will surely pose a great impact for enhancement of my knowledge in various research fields.

Hi, I am Ibrahim MA Maamoun, from Egypt. Currently I am enrolled in Green Asia (GA) program as a second year master student at Kyushu University. I have graduated from Al-Azhar University in Egypt and I still hold my position back there as a university demonstrator. As part of GA activities required to fulfill the credits for QE, I went for lab rotation at Saha’s Lab at I2CNER under supervision of Saha Sensei. The main activities I conduct there are doing some measurements on different devices to investigate the characteristics of the materials I have used in my research including particle size and specific surface area. In addition, I take some measurements of specific heat capacity values for different reactive materials in order to find a relation between the heat capacity and the reactivity. As well as, visiting new lab with different research interests gave me the opportunity to communicate with the researchers there and gain more experience with the help of them. Finally, I can say that such activities in GA program such like lab rotation represents a great opportunity for all students to gain more knowledge in their research field or even in different topics.