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Abstract

We numerically calculated solutions of the full non-linear fundamental water wave equation to study the
behavior of three dimensional periodic water waves in shallow water. In shallow water, unlike deep-water
waves, the dispersiveness can be balanced with the non-linearity and waves can form solitary waves.
Korteweg-de Vries (KdV) equation has been well known as a model describes such solitary wave motions
of weakly non- linear propagating in one direction. A still more interesting problem should be interactions
of solitary waves. Those phenomena with weakly non-linear can be approximated by Kadomtsev
Petviahvili (KP) equation that is an extended model of KdV equation. We focus on even stronger
non-linearity wave motions than weakly non-linearity for which KP will be valid. The behavior of
harmonic resonance in a periodic solution in this study is a part of our interest.

1. Introduction

In this study, we investigate interactions of two
solitary waves in shallow water. Particularly, we are
interested in interactions of large amplitude solitary
waves and properties of periodic solutions of these.
Thus we extend cases of weakly nonlinear interactions
to cases of strong nonlinear interactions by using
numerical schemes, such as the Newton method and the
Galerkin method and obtain periodic steady state
solutions from fundamental equations for water waves.
As a property of periodic solutions, obtained numerical
solutions deviate from Miles’ theoretical values in
some conditions [1, 2]. Miles’ theory is based on the
third order approximation and describes asymptotic
solutions t — oo. Harmonic resonances are suspected
causes of these deviations but the causes are not fixed
because of the complexity of nonlinearity. In
comparison between interactions of weak nonlinear
cases and these of strong nonlinear cases, there are
some differences in the length of stems and the ratio
a =ay/a; (ay isthe maximum wave height divided
by the uniform depth d. a; is an incident solitary
wave height divided by the uniform depth d) caused
by the limitation of solitary wave heights.

2. Formulation of the problem
2.1 Fundamental equation for water waves

We consider a gravity wave on an inviscid,
incompressible fluid of uniform depth and also
irrotational flow is assumed. d is the uniform depth,
¢ is the velocity potential,x and y are horizontal
coordinates, z 1is the vertical coordinate, z =
n(x,y,t) is the surface displacement and g is the
gravitational acceleration. Fundamental equations for
water waves are written as

Ap =0 forz < n(x,y,t), 2.1
§:¢t+%v¢-v¢+gz=00nz= 2.2)
n(x,y,0), '
2(0)= (2 70:) o+ b
9] =0 (2.3)
on z =n(x,y,t),
¢, =0 on z=—d. (2.4)

2.2 Formulation for numerical calculation

In order to calculate a steady progressive wave,
we consider moving coordinate and we normalize the
variables as follows.

(x*,y*,z",H") = (Kx,Ky,Kz,KH),
2
t' = ot, & =9,
T=px*—t", Y=qy", Z=2",

(2.5)

where K is a wave number, w is a frequency of an
incident water wave and p = sinf; and q = cos#;.
Here, 0; denotes the initial angle of the Fourier mode.
When a wave number vector of the Fourier mode is
(ky, ky), we have relations as
ky = Ksin®;, k, = Kcos;, tand; = ky/k,. (2.6)
Then
oY,2,T) =" (x",y",z", H"),

HY,T) = Hix", y", t%). 2.7)
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Then the form of the fundamental equations becomes

p2®rr + q*Pyy + P4, =0 for Z< HY,T), (2.8)
P(Y,Z,T) = ~®; + GZ
+2(p?0r? + 20y % + @,%) = 0 (2.9)
on Z=H(,T),
QY,Z,T) = Orp
+p2 O (=2@7r + P2 PrPrr + q* Py Dy
+ ®;P,r)
+q* Py (—2Pyr + p*PrPyr + q* PyPyy
(2.10)
+ ®;Dy;)
+ @, (=2P s + p?Or®yr + q* Py Dy,
+ P, + G)
=0on Z=H(,T),
®,=0 on Z = —d. @.11)
We define the maximum wave height as
ay = [H(0,0) — H(x, 0)]. 2.12)

Assuming the velocity potential @ as periodic, we
have a truncated series

o(Y,Z,T) = Z Z Agjlcosh(ay;Z)

k=0j=1 2.13)
+sinh(aij)tanh(akjd)]cos(kY)sin(jT),

e =P + k2.

3. Numerical scheme

Applying Newton's method to (2.9), the recurrent
formula for Newton's method to calculate the surface
displacement H is

az
Hn+1 = HTL - dP(Y,Hy,T) P(Y: Hni T) (31)
Then wusing Galerkin's method to obtain the

independent relations for unknowns Ay, we have
Flm (Akj' G)
T A
= | dY | dTQ(Y,H,T)cos(lY)sin(mT)
0 0 (3.2)
=0.
Because when [+ m is odd, (3.2) is trivial, the

number of independent relations (3.2) is N(N + 1)/2.
Another independent relation is expressed as

W(Axj,G) = ay

—[H(0,0; Ay, G) — H(m,0; Ay, G)] = 0. 33)

Finally, we can obtain the sufficient number of
independent relations and we can solve the nonlinear
equations (3.2) and (3.3). Here, a result of the third
order approximation for short-crested wave calculated
by Hsu et. al. [3] is used as the initial solution of
iterations.

4. Result
4.1 Weakly nonlinear cases
We discuss weakly nonlinear interactions;

0.02 < a; < 0.04. Miles’ theory is based on the third
order approximation. Because of our symmetric
assumption of a solution, any solution cannot be found
for the interaction parameter x <1 where Kk =

cosd)/(tanl/)\/f%_ai) [4] and ¢ is the angle between
obtained incident wave crest and Y-axis (see Fig 4.3).
Most of our results are consistent with those obtained
from Miles’ theory as shown in Fig 4.1. However,
some large or small deviations exist in scattered state.
Apparently, the harmonic resonance is a cause of these
deviations and we will investigate this in the next
section in more detail. Stems suddenly extend in Y
direction as x approaches k¥ = 1.0 from x=1.1,
which is called a soliton resonance [2].(see Fig.4.2)
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Figure 4.1. The ratio @ = ay/a; versus k for

d = 0.050.— : Miles’ theory; o: the present result.
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Figure 4.2. The wave profile for k = 1.0 and d =

0.050.
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Figure 4.3. The contour for ¥ = 1.0 and d = 0.050.

4.2 Harmonic resonance

We investigate the deviations where depths
d = 0.050 and d = 0.090. Fig 4.4 shows the chosen
region denoted by squares (a) and (b) for the depth
d = 0.050 and the enlargement of the region (a).
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Figure 4.4. The ratio @ = a,,/a; versus the angle of the
Fourier modes 6; for d = 0.050.
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Fig 4.5 shows the value of the coefficient difference
|AAy; ;| defined as (4.1).

AAgje, = Akjo+50;, — Akjo; 4.1)

We can see that certain coefficients become
considerably large such as Ag, and A,5 in Fig 4.5,
which deviate our results from Miles’ theory.
Harmonic resonance of a water wave for a finite depth
is known to exist [5] if an interaction of waves satisfies

ay;tanh(ay;d) = j?tanh(d). 4.2)

However, we have not been able to find good
agreements between a harmonic resonance angle 6y
and an angle of our result where the deviation occurs.

() 0,=75.90° (ii)

6,=76.20°

Figure 4.5. The value of the coefficient difference
|AAy; ;-

4.3 Strong nonlinear cases

In strong nonlinear cases, our numerical result
does not agree with Miles’ theoretical value, which is
an inevitable result because the nonlinearity parameter
a; is out of Miles’ approximation of the weakly
nonlinearity a; << 1. (see Fig. 46) Bad convergences
frequently occur for some angles 6; and result in
rough wave profiles. We consider that these
phenomena are the same phenomena as that we have
found in weakly non-linear cases.
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Figure 4.6. The ratio a = a,,/a; versus k—
theory; o: the present result.

Differences between present results and Miles’
theoretical value increase as k approaches k = 1.0. A
Mach stem made by an interaction of two solitary
waves becomes a steady solitary wave and the
maximum solitary wave height is known as 0.827 [6].
We consider that even if an incident wave height q;
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increases, the maximum height a, is suppressed
within the maximum solitary wave height of 0.827.
This is why the ratio @ of the maximum height a,, to
an incident wave height a; decreases as an incident
wave height a; increases.

Next, we examine wave profiles for ¥ = 1.1 and
k =1.0 with incident wave heights a; =0.1 ,
a; = 0.2 and a; = 0.3 (see the wave profile and the
contour in Fig. 4.7 and Fig. 4.8 for a; =0.3). In
comparison with a weakly nonlinear case, when
K = 1.1, there is little difference between a weakly and
a strong nonlinear cases. However, when k = 1.0,
there is a clear difference between them in the length of
a stem. The length of a stem in a strong nonlinear case
is shorter than that in a weakly nonlinear case. And this
difference becomes more remarkable as an incident
wave height a; increases.
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Figure 4.7. The wave profile for k = 1.0 and a; = 0.3.
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Figure 4.8. The contour for k = 1.0 and a; = 0.3.

5. Conclusions

The scheme used in this research was successful
to obtain a solution for three-dimensional large
amplitude shallow water wave. When incident wave
heights a; is small, most of our numerical results
show good agreement with Miles’ theoretical values.
However, some deviations exist and we observed such
wave profiles were rough and their convergences were

worse than others. We found that as an incident wave
height a; increases, the ratio a of the maximum wave
height a, to an incident wave height a; started
decreasing and accordingly, a difference between the
present result and Miles’ theory increased. We
investigated the cause of those deviations. We found
that certain coefficients Ay; for wave numbers (k,j)
became considerably large and those wave numbers
(k,j) depend on the incident angle 8;. We compared
our result with a harmonic resonance angle Oy .
However, we could not find good agreement in
comparisons between our numerical result and a
harmonic resonance angle 6yr.When k = 1.0, since
the maximum height a, is suppressed within the
maximum solitary wave height of 0.827, the length of a
stem in a strong nonlinear case was shorter than that in
a weakly nonlinear case.
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