Characterization of near-interface border-traps in GeO₂/Ge gate stacks grown by thermal oxidation using deep-level transient spectroscopy

Wei-Chen Wen, ¹ Keisuke Yamamoto, ¹ Dong Wang ¹ and Hiroshi Nakashima ²

¹Interdisciplinary Graduate School of Engineering, Kyushu University

²Global Innovation Center, Kyushu University

Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan,

Abstract

We developed a method for characterizing the near-interface border-traps (BTs) in GeO₂/Ge gate stacks using deep-level transient spectroscopy. The BT density ($N_{\rm BT}$) in p-MOS grown by low temperature oxidation is smaller than that by high temperature oxidation. By contrast, the $N_{\rm BT}$ in n-MOS is almost the same regardless of the oxidation temperature. In addition, the $N_{\rm BT}$ in p-MOS is drastically decreased by Al post metallization annealing (Al-PMA), but the $N_{\rm BT}$ in n-MOS is not decreased. These results suggest that the species of BT in n-MOS are different from that of p-MOS.

1. Introduction

A high-quality gate-stack formation on Ge is essential for high-performance Ge MOSFETs. Although a GeO2 is effective in reducing the interface-traps (ITs), a large amount of border-traps (BTs) causes serious problems. In this study, we established a method of BT characterization by deep-level transient spectroscopy (DLTS), investigated BTs in two kinds of MOS capacitors (CAPs) with a structure of SiO₂/GeO₂/Ge. One was a relatively thick GeO₂ by thermal oxidation at 550°C, at which GeO₂ volatilization may occur at the GeO₂/Ge interface.^[1] The other was a thin GeO₂ by the oxidation at 425°C, at which the volatilization may not occur. The Al post metallization annealing (PMA) effect on BT passivation was also studied.

2. Experimental

After substrate cleaning, 1 nm-SiO₂/1 nm-GeO₂ bilayer passivation was performed $^{[2]}$, followed by a post thermal oxidation (PTO) at 550°C for 15 min or 425°C for 9 h in O₂ ambient. Next, 14-nm-thick SiO₂ was deposited on the both samples, followed by a post deposition annealing at 400°C for 30 min in N₂. Then, an Al gate film was deposited on the SiO₂ surface by thermal evaporation. Before electrodes formation, an

optional Al-PMA was carried out at 300° C for 30 min in N₂. The equivalent oxide thicknesses (EOTs) of the MOSCAPs with PTO at 550 and 425°C were ~19.5 and 16.8 nm, corresponding to GeO₂ thicknesses of 6.6 and 2.6 nm, respectively.

DLTS measurements were performed using a lock-in integrator. Pulse frequency f=10 Hz were used, which corresponds to BT position $z_0=1.4$ nm from the interface for p-MOS and $z_0=2.0$ nm for n-MOS.

3. Results and disscussion

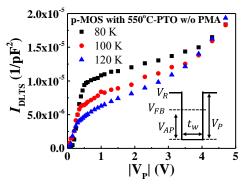
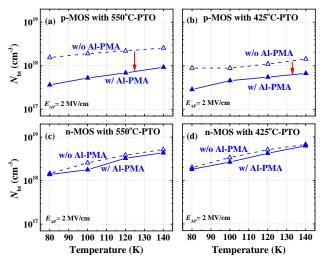


Fig. 1 I_{DLTS} dependence on V_P for a p-MOS with PTO at 550°C without Al-PMA.

Figure 1 shows DLTS signal intensity (I_{DLTS}) dependence on pulse height (V_P) with a maximum pulse width (t_w) of 5 ms at different temperatures (T_S) for a MOSCAP with PTO at 550°C and without Al-PMA.


Let us pick up the result at 80 K as an example. The I_{DLTS} drastically increased when the V_P increased from 0 to 0.5 V. Note 0.5 V is approximately the $V_{\rm FB}$ at 80 K for this sample. Therefore, this increase is dominated by the capture process of IT.[3] We believe that the weakest injection condition (t_w =2 μ s) under pulse intensity $E_{AP}=0$ MV/cm is enough to compose the IT signals. $(E_{AP} = V_{AP}/EOT$, where V_{AP} is the applied voltage above flat band voltage.) Therefore, we use these data for IT density (D_{it}) calculation. In the case of $V_P > 0.5 \text{ V}$, namely after the accumulation was established, the increase in I_{DLTS} with $V_P >$ 0.5 V was governed by the capture process of BT because of an increase in hole numbers at Ge side of the GeO₂/Ge interface. After subtracting the IT signal from I_{DLTS} , we calculate the BT density $(N_{\rm bt})$. The details of which will be presented in the forum.

 $D_{\rm it}$ characteristics (not shown) are almost identical for both the MOSCAPs, implying that the interface property is not influenced by ${\rm GeO_2}$ volatilization. The Al-PMA is effective in decreasing $D_{\rm it}$ near the valence band edge but not near the conduction band edge (even worse), which is consistent with our previous experimental results of Al-PMA effects on Ge-MOSFET performance.^[3, 4]

Figures 2(a) and 2(b) show dependence of N_{bt} on T for p-MOSCAPs with PTO at 550 and 425°C, respectively. Figures 2(c) and 2(d) represent the similar results for n-MOSCAPs with PTO at 550 and 425°C, respectively. It was confirmed from these results that 1) the $N_{\rm bt}$ for p-MOS with is a half of 425°C-PTO that with 550°C-PTO under $E_{AP}=2$ MV/cm, suggesting BT in p-MOS is associated with GeO_2 volatilization; 2) the N_{bt} for p-MOS is drastically decreased by Al-PMA. The $N_{\rm bt}$ s for n-MOS with PTO at 425 and 550°C (not shown) are almost the same and not decreased by Al-PMA, suggesting species of BT in n-MOS are different from that of p-MOS.

5. Conclusion

Near-interface BT in GeO₂/Ge structures were characterized by DLTS. The $N_{\rm bt}$ in p-MOS were drastically decreased by Al-PMA, but the $N_{\rm bt}$ in n-MOS was not decreased. This is a reason for difficulty of the electron mobility enhancement.

Fig. 2 Dependence of N_{bt} on T for p-MOS with (a) 550°C-PTO and (b) 425°C-PTO. Dependence of N_{bt} on T for n-MOS with (c) 550°C-PTO and (d) 425°C-PTO. The results with Al-PMA are also shown.

Acknowledgment

This study was partially supported by (JSPS) KAKENHI (Grant No. 26289090).

Reference

- [1] K. Prabhakaran, F. Maeda, Y. Watanabe, T. Ogino, *Thin Solid Films* **2000**, 369, 289.
- [2] K. Hirayama, K. Yoshino, R. Ueno, Y. Iwamura, H. Yang, D. Wang, H. Nakashima, Solid State Electron. 2011, 60, 122.
- [3] D. Wang, S. Kojima, K. Sakamoto, K. Yamamoto, H. Nakashima, *J. of Appl. Phys.* 2012, 112, 083707.
- [4] Y. Nagatomi, T. Tateyama, S. Tanaka, W.C. Wen, T. Sakaguchi, K. Yamamoto, L. Zhao, D. Wang, H. Nakashima, *Mater. Sci. Semicond. Process.* 2017, 70, 246.

Email: 3ES17010E@s.kyushu-u.ac.jp