科目	共通問題 とする類	出題範囲
数学I(線形代数、 微分方程式)	I, II, III	行列の演算および基本的事項 連立一次方程式、逆行列 ベクトル空間 行列式 線形写像 固有値、固有ベクトル 常微分方程式 連立常微分方程式
数学II(微分積分学、ベクトル解析、 複素関数)	11', 111	級数、極限、多変数関数の微積分 ベクトル演算とその応用(例えば、勾配、発散、回転) 線積分・面積分・体積積分とその応用(例えば、ガウスの定理、ストークスの定理) 正則関数に関する事項 複素関数の積分に関する事項 複素関数の級数展開
力学	II, III	質点・質点系の力学 剛体の力学
熱力学	11', 111	熱力学第 1 法則 熱力学第 2 法則 理想気体 実在気体 熱力学サイクル
流体力学	11′, 111	静水力学 ベルヌーイの定理、連続の式、運動量保存則 管内流れと損失 粘性流体の流れ(層流) 完全流体(理想流体)の流れ 次元解析と相似則 ※圧縮性流体は出題範囲に含まない。
電磁気学	I, II, III	静電界 定常電流 静磁界 定常電流と磁界 電磁誘導
電気回路論	I, II	直流回路 交流回路 重要な諸定理 二端子対回路 過渡現象 三相交流回路

量子力学	I, II	光と物質の波動性と粒子性 シュレーディンガー方程式 波動関数 不確定性原理 ポテンシャル問題 トンネル現象 調和振動子 3 次元中心力場の問題
固体物性学	I	・固体内の結合 ・結晶構造 ・構造因子と回折 ・格子振動と熱的性質 ・金属と半導体の電気的性質 推奨参考書: 「材料科学者のための固体物理学入門」志賀 正幸(内田老鶴圃)1-6,8章 「材料科学者のための固体電子論入門」志賀 正幸(内田老鶴圃)4-6章 「キッテル 固体物理学入門」第8版 チャールズ キッテル (丸善)1-6,8章 などの教科書の該当する部分
化学熱力学	I	・化学熱力学(気体の性質、第一法則、第二法則、第三法則、純物質の物理的変態、単純な混合物、相図、活量、自発反応など) 推奨参考書: アトキンス「物理化学」(第8版,東京化学同人)の1-6章 アトキンス「物理化学」(第10版,東京化学同人)の1-5章(ただし5D節(3成分系の相図)は除く) その他参考書: ボール「物理化学」(化学同人)、バーロー「物理化学」(東京化学同人)などで上記範囲に相当する部分
化学反応論	I	・化学平衡論(平衡定数、外部条件に対する平衡の応答など) ・電気化学(半反応と電極、起電力、標準電位、熱力学関数の計算など) ・反応速度論(一次反応、二次反応、定常状態近似、アレニウスの式、複雑な反応の速度、衝突理論、遷移状態理論など) 推奨参考書: アトキンス「物理化学」(第8版,東京化学同人)の7章、22-24章に相当する範囲 アトキンス「物理化学」(第10版,東京化学同人)の6章、20章、21章(ただし21F節(電極で起こる諸過程)は除く)に相当する範囲」 その他参考書: ボール「物理化学」(化学同人)、バーロー「物理化学」(東京化学同人)などで上記範囲に相当する部分

		1
化学結合論	I	 ・原子構造と周期表(量子数、フントの規則、エネルギー準位、原子半径、イオン化エネルギー、電子親和力、電気陰性度など) ・化学結合(結合の種類、イオン結合、共有結合、金属結合、配位結合、水素結合) ・分子の構造(原子価結合理論、混成軌道、分子軌道理論、分子の立体構造と極性) 参考図書:シュライバーアトキンス無機化学
無機物質化学	I	 ・単純な固体の構造 ・酸と塩基 ・酸化還元 ・錯体化学(錯体の配位数と構造、配位子、錯体の結合、結晶場理論、配位子場理論、ヤーンテラー効果など) ・無機化合物と元素(水素、典型元素、遷移金属、希土類元素など) ・溶液の濃度と化学平衡(電解質、酸塩基平衡、pH、酸化還元平衡、溶解度積) ・機器分析(吸光光度分析、X線分析、磁気共鳴分析、クロマトグラフィー、電気泳動、質量分析、熱分析などの基礎) 参考図書:シュライバーアトキンス無機化学
有機物質化学(主 に物性、機能、構 造、立体、反応から 3題、生化学から1 題出題され、3題選 択する)	I	・アルカン・アルケン・アルキン・ハロゲン化アルキル・エーテル・アルコール・アミン・チオール・芳香族化合物、カルボニル化合物・カルボン酸誘導体の化学(主に構造、物性、機能、分析、反応)・立体化学・分光法(NMR、IR、MS)による構造解析参考図書:ブルース、マクマリー、ボルハルトショア―など、有機化学の一般的教科書 ストライヤー、ヴォート、ホートンなどの代表的な生化学教科書から以下の基礎的生化学・ヌクレオチド、核酸、アミノ酸、タンパク質、脂質、糖質などの生体分子化学・生体分子の高次構造、機能、および酵素反応・遺伝子の発現・糖質代謝
有機合成化学(主 に反応機構、合成)	I	・アルカン・アルケン・アルキン・ハロゲン化アルキル・エーテル・アルコール・アミン・チオール・芳香族化合物、カルボニル化合物・カルボン酸誘導体の化学(主に反応機構、合成)・ペリ環状反応(環化付加反応・電子環状反応)参考図書:ブルース、マクマリー、ボルハルトショア―など、有機化学の一般的教科書

金属材料学	I	 結晶構造、格子欠陥、状態図、凝固、相変態、熱処理、微細組織を主とした内容。 推奨参考書:「金属材料組織学」松原英一郎 他6名(朝倉書店) ・弾性変形、塑性変形、転位の運動、強化機構を主とした内容。 推奨参考書:「入門転位論」加藤雅治(裳華房)
高分子科学	I	 高分子の化学構造(一次構造、分岐構造、立体規則性、分子量と分子量分布) 高分子の合成(逐次重合、連鎖重合) 高分子の物性(溶液物性、力学物性) 高分子の固体構造 推奨参考書: 高分子化学-基礎と応用-第3版(2012年)東京化学同人