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Thermocapillary flow in a shallow annular pool (Ri=20 mm, Ro=40 mm and depth d=1.0 mm) of silicone oil (0.65 cSt,

Pr=6.7), heated from the outer wall and cooled at the inner wall, is investigated by numerical simulation. Numerical results

clarified details of pattern formation and oscillatory behavior of hydrothermal waves (HTW) as well as the critical

conditions for their incipience. In non-rotating pool, the critical Marangoni number Mac for the incipience of the HTW is

8.396×103(∆Tc=5.03K). The critical azimuthal wave number mc is 27. At slightly super critical conditions, a single group of

HTW propagating in the azimuthal direction is dominant after a long calculation time. Further increase in Ma causes

coexistence of several groups of HTW with different wave numbers and propagation directions. Effect of a slow rotation of

the pool around its central axis destabilizes the basic steady axisymmetric flow against HTW. At Ta=0.322 (corresponding to

a rotation rate of 2 r.p.m.), the Mac was determined as 8.096×103 (∆Tc=4.85K) with mc=30. Over a range of Ma from

8.76×103 to 2.0×104, numerical simulations indicate that the HTW propagates azimuthally opposite to the direction of the

pool rotation in a rotating coordinate. This phenomenon, i.e. a selection of propagation direction, is caused by the azimuthal

velocity component in the basic flow field induced by the Coriolis force. At Ma=1.34×104, the azimuthal wave number m

increases up to 54 accompanied by an appearance of finger-shaped patterns. At Ma=2.0×104, two groups of HTW with

greatly different wave numbers (m=48 and m=5) coexist and propagate in the opposite azimuthal directions.
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1. Introduction

In past few decades, thermocapillary convection had

been increasingly interested in many fields, such as

subcooled nucleate pool boiling
1-3)

, thin-film coating
4)

, and melt growth of single crystals
5-6)

. In

single-crystal growth processes, such as the

Czochralski (Cz) methods, thermocapillary force

gives significant effects on the stability of melt flow
7-9)

. Spatio-temporal changes of the unstable melt

flow cause inhomogeneous distribution of dopant and

point defects in the grown crystals. In Cz melt pools,

convection is driven by buoyancy force, thermo-

capillary force, centrifugal force and Coriolis force.

Combination of these driving forces sometime leads

very much complex and unstable flow patterns

accompanied by time-dependent three dimensional

oscillations of temperature and concentration fields
10)

. Spoke patterns on oxide melt surfaces are

explained by the Marangoni effect caused by a

temperature gradient perpendicular to the liquid

surface (Marangoni instability of Pearson type)
7-8)

.

However, Azami et al. suggested the hydrothermal

wave type instability (caused by a horizontal

temperature gradient on the surface) is a possible

mechanism of pattern formation in shallow pool of

silicon melt in a Cz furnace based on their

experiment
10)

.

The hydrothermal wave (HTW) type flow

instability was first predicted by Smith and Davis

(hereafter SD)
11)

. They investigated stability of

thermocapillary flows in rectangular shallow pool of

liquid induced by a horizontal temperature gradient

on the surface and found a new type of oscillatory

instability on the basis of three-dimensional,

time-dependent linear stability analysis (LSA).

In rectangular pools, this type of flow instability

had been confirmed by experiments using various

silicone oils with different Prandtl numbers
12-16)

. To

eliminate the effects of buoyancy, experiments were

conducted mostly in shallow liquid layers. Riley and

Neitzel
13)

and Burguete et al.
14)

obtained a stability

limit diagram for thermocapillary flow as a function

of liquid depth. Their results suggested that the

critical Marangoni number (Ma*=γT∆Τd2
/µαL)

increases with liquid depth d, where γT is the

temperature coefficient of surface tension
13)

.  
Thermocapillary flow instability in annular liquid

pools had been studied by several researchers.

Kamotani et al.
17-19)

conducted a large set of

microgravity experiments on oscillatory thermo-

capillary flow of silicone oil in open cylindrical

containers with aspect ratios (As=(ro-ri)/d) close to 1

or 2 (with cylindrical diameters of 12, 20 and 30 mm)

where liquid was heated by a hot solid cylinder

located at the pool axis or a laser beam. They

observed two or three lobed surface temperature

patterns.

*1Interdisciplinary Graduate School of Engineering Sciences,

Kyushu University, Japan 
*2College of Power Engineering, Chongqing University, China 
*3Institute for Materials Chemistry and Engineering, Kyushu

University, Japan

九 州 大 学 大 学 院 総 合 理 工 学 報 告  Engineering Sciences Report, Kyushu University 
第 28 巻 第 1 号 1-8 頁 平成 18 年 6 月 Vol.28, No.1 pp.1–8, JUN. 2006 

 



Mukolobwiez et al.
20)

observed HTW traveling in

the azimuthal direction in a shallow annular channel

of silicone oil (Pr=10) (1.7 mm in depth, 10mm in

width with a mean radius 80 mm) heated from the

inner wall. The influence of liquid depth on the

wavelength of the HTW was investigated by

Schwabe et al.
21)

through their experiments on

thermocapillary flow in annular liquid pools of

ethanol (Pr=17) with thickness ranging from 0.6 mm

to 3.6 mm (inner radius 20mm, outer radius 77mm),

heated at the inner rod. They observed short

wavelength temperature patterns with curved arms

(part of spirals) in shallow liquid pools (d<1.4 mm)

and long-wavelength temperature patterns in deeper

pools (d>1.4 mm). Hoyas et al.
22, 23)

conducted linear

stability analysis and obtained a stability diagram for

the incipience of oscillatory flow in annular liquid

pools heated at the inner wall (aspect ratio 2.5 ≤ As

≤ 10), taking the surface heat transfer to the ambient

air into account. 

For annular pools heated at the outer wall and

cooled at the inner wall, Garnier and Chiffaudel
24)

clearly observed HTWs with spiral-like arms in an

annular container of silicone oil (Pr=10, 135mm in

diameter with an inner cold rod of 8 mm in diameter,

and with a depth of 1.2 mm or 1.9 mm; As=52.9 or

33.4). They observed pulsating, target-like wave

patterns (i.e., coaxial circles traveling outward in the

radial direction) dominant only near the cold inner

wall, as well as the curved arms of HTW dominant in

the whole area of the liquid pool. Later, Schwabe et

al.
25, 26)

found that gravity significantly stabilizes the

basic steady radial thermocapillary flow of silicone

oil (Pr=6.8), by comparing their results of on-ground

experiments and microgravity experiments on the

FOTON-12 satellite.

Since it is difficult to understand the details of

thermocapillary convection through experiments,

numerical simulations had been carried out by some

researchers. Xu and Zebib
27)

conducted a set of

numerical simulations of thermocapillary convection

in a rectangular pool and obtained a stability diagram

and wave numbers. Thermocapillary flow in an

annular pool of silicone oil was worked out by Sim et

al.
28)

for the same geometry as that of Schwabe’s

experiment on FOTON-12. On the other hand, Li and

coworkers
29)

also conducted numerical simulations

of thermocapillary convection in annular pools with

the same geometry as those of the FOTON-12

experiments. Their stability diagram was compared

with those of FOTON-12 microgravity experiments.

Recently, Shi and Imaishi
30)

conducted a set of

numerical simulations for silicone oil (Pr=6.7) in an

annular container with the same geometry as that of

Schwabe’s experiment
26)

but much thinner depth

(d=1mm, As=20) and evaluated the effect of gravity

on the critical Marangoni number and wave patterns.

Effects of the Coriolis force on the critical

condition for the incipience of hydrothermal waves

were analyzed in order to evaluate the effect of

system rotation (order of the rotation rate Ω is about

10
-3

rad/s) during the microgravity experiments in

space vehicles orbiting around the earth with a period

of 2 hours or so. Zebib
31)

conducted a linear stability

analysis of thermocapillary convection in an

infinitely extended rectangular pool. His results

indicate the effect of system rotation on the

incipience of three dimensional secondary flows over

a wide range of the Taylor number (Ta=Ωd
2
/ν)

between –50 to 100. For rotation around an axis

perpendicular to the liquid surface, Zebib’s LSA

predicts that the basic flow is slightly stabilized

against HTW but destabilized against stationary three

dimensional disturbances if Pr number is smaller

than a critical value, Prc, which depends on Ta, such

as Prc=1 for Ta=3 and Prc=7.1 for Ta=5, respectively.

At Ta=8, HTW disappears and the basic flow

becomes unstable against stationary 3D disturbances

at much smaller Mac than those of SD. Further

increase in Ta increases the critical Marangoni

number. At Ta ≥ 50, the basic flow is stabilized

compared with SD in the whole range of Pr against

stationary disturbances. Bauer and Eidel
32)

analyzed

the axisymmetric thermocapillary flow (the basic

flow) in deep cylindrical containers similar to the

microgravity experimental apparatus used by

Kamotani, heated at the outer wall under gravity and

rotating about its center axis over a range of

Ta*=Ωa2
/ν = 1 - 400 (here, a is the radius of the outer

cylinder). The Coriolis force induces an azimuthal

velocity in a rotating annular pool. The azimuthal

velocity near the free surface is large and directs in

the same direction as that of the pool rotation. Far

below the free surface, the azimuthal velocity is small

and directs opposite to that of the pool rotation. Sim

and Zebib
33)

numerically investigated the effect of

orbiting motion of the space vehicle on the transition

to an oscillatory flow from the basic thermocapillary

convection in an open deep cylindrical annulus

heated from the inner wall with As=1.0 and Pr=30,

exactly corresponding to Kamotani’s microgravity

experiments. They found that Mac decreases with

increasing Taylor number in a range of Ta= 0 - 10.

However, there are few numerical reports on the

HTW in very thin annular pools of silicone oil, such

as 1.0 mm. In this work, we numerically investigate

the thermocapillary convection and the effects of the

pool rotation (Ta) on the basic thermocapillary flow

and the critical conditions for the incipience of

hydrothermal waves in a shallow annular pool of

silicone oil heated from the outer wall. The value of

Taylor number in this work Ta=0.322 (rotating rate of

0.21 rad/s) is much smaller than those in the

literatures
31-33)

.
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2. Model and methods

2.1 Physical and mathematical models

As shown in Fig.1, the model system is an annular

pool with an open top free surface and a solid bottom,

with an inner solid wall (radius Ri=20 mm), an outer

wall (radius Ro=40 mm) and depth d=1.0 mm. These

geometries are same as those of Schwabe’s

experimental apparatus
26)

except for the liquid depth.

The pool can rotate around the vertical central axis

with constant rotating rate. The fluid is silicone oil.

Its physical properties are listed in Table 1.

The outer wall is maintained at a constant

temperature Th while the inner wall at a lower

temperature Tc (Th>Tc and ∆T=Th-Tc). Top and

bottom surfaces are considered to be adiabatic. The

silicone oil is regarded as an incompressible

Newtonian fluid with constant properties except for

the temperature dependence of surface tension. The

Marangoni effect (thermocapillary force) acts on the

surface. The flow is considered to be laminar. The

liquid top surface is assumed to be flat and

nondeformable.

Under the above assumptions, a mathematical

model is expressed by the following nondimensional

equations in a coordinate system co-rotating with the

pool around the z axis. In the cases of axisymmetric

steady simulations, we assume that all gradients in

the azimuthal direction are zero. 

0=⋅∇ V (1)

VeVPVV
V

×−∇+−∇=∇⋅+
∂

∂
z

2
2Ta

τ
(2)

Θ
1

Θ
Θ 2∇=∇⋅+

∂
∂

Pr
V

τ
(3)

Here, ez is a unit vector in z direction. The followings

are used for the boundary conditions. 

At the top surface:

rPr

Ma

z

u

∂
∂

−=
∂
∂ Θ

,
θrPr

Ma

z

v

∂
∂

−=
∂
∂ Θ

, (4a, b) 

0
Θ

= =
∂

∂

z
w . (4c,d)

At the bottom:

0=== wvu , 0
Θ

=
∂
∂

z
. (5a, b, c, d) 

At the inner wall:

0=== wvu , 0Θ = . (6a, b, c, d) 

At the outer wall:

0=== wvu , 1Θ = . (7a, b, c, d) 

Initial conditions are as follows.

For axisymmetric steady simulations,

0=V ,
( )
( )io

i

ln

ln
Θ

rr

rr
= . (8a, b) 

For 3D simulations, either Eqs. 8a, b, or a 3D

results obtained at a smaller Ma was used as an initial

condition. While for the simulations to

Fig.1 Configuration of the model system.

Table 1 Physical properties of silicone oil 

Prandtl number, Pr=6.7

Density, ρ=760 kg/m3

Thermal diffusivity, α=9.7×10-8 m2/s

Kinematic viscosity, ν=6.5×10-7 m2/s

Thermal expansion coefficient, ρ
T
=1.34×10

-3
1/K

Temperature coefficient of surface tension, γT=8.0×10-5 N/m K

determine Mac, axisymmetric steady fields obtained

by axisymmetric simulation under the same Ma were

used.

Here, u, v and w are velocities in r, θ and z

directions, respectively. The length, time τ, pressure

P, velocity and phase (angular) velocity ω of HTW

are scaled by d, d2
/ν, νµ/d2,  ν/d and ν/d2

,

respectively. Non-dimensional temperature is defined

as Θ=(T-Tc)/∆T, here ∆T=Th-Tc. The Marangoni,

Prandtl and Taylor numbers are defined as

Ma=γTd∆T/µα, Pr=ν/α, Ta=Ωd2
/ν, respectively. Here,

µ is the viscosity, γT=-∂γ/∂T the temperature

coefficient of surface tension, γ the surface tension,

and α the thermal diffusivity of silicone oil. Ω is the

angular velocity of the pool rotation. The stream

function ψ is defined as 
z

ψ

r
u

∂
∂

−=
1

,
r

ψ

r
w

∂

∂
=

1
.

2.2 Numerical methods

The equations (1)-(8) were discretized by the control

volume method in the staggered grid system. The

non-uniform grids are constructed to achieve finer

meshes in the regions near the free surface and

bottom and also near the sidewalls where the

boundary layer develops. The space intervals

between two neighbor grids were changed in a

sinusoidal function within a half cycle to provide

finer grids near the boundaries. For example, in a

mesh system with grid points of 202
r
×603

θ
×21

z
, the

minimum space intervals in the radius and z direction

were 0.015 and 0.013, respectively. The azimuthal

direction has uniform staggered grids in all cases.

The central difference approximation was introduced

for the diffusion terms. Convective terms were

treated by the second-order upwind scheme excepted

for the azimuthal direction where the QUICK scheme

was adopted. The equations were discretized by a

fully implicit method in the time marching. The
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SIMPLEC algorithm
34)

was used to handle the

pressure coupling. The preconditioned Bi-CGStab

algorithm
35)

was applied to solve the discretized

equations. Convergence at each time step was

assumed when both of the following conditions were

satisfied:

≤max|| iR 10
-N

and 4
max1

1

10|| −
+

+

≤
−

i

ii

φ

φφ
,

where max|| iR is the absolute maximum residual of

the nondimensional continuity equation among all

control volumes in ith iterating step. φ indicates any

one of the variables u, v, w and Θ. N was varied

between 12 and 10 depending on Ma i.e., N=12 was

used for a small Ma and N=10 for a larger Ma. The

numerical simulations were conducted on one PE of

Fujitsu VPP5000/64 supercomputer at the Computing

and Communications Center of Kyushu University.

The grid convergence was carefully checked

through numerical simulations using different grid

systems
30)

. These results confirm the grid

convergences. In order to save computation time,

most of the following results were obtained using a

grid 202
r
×363

θ
×16

z
for non-rotation pools. However,

the critical Marangoni number and the critical

frequency were determined on the basis of the results

using a grid system of 202
r
×603

θ
×16

z
. In the rotating

pool, due to larger azimuthal wave number, a finer

mesh 202
r
×603

θ
×21

z
was used to provide higher

spatial resolutions. The grid convergence in a rotating

case is shown in Table 2.

Table 2 Mesh dependency of the oscillatory parameters under

Ma=1.0×104(∆T=6.0K), Ta=0.322.

Mesh sizes (r×θ×z) Wave number m Frequency f (Hz) 

202×603×16 27 0.547

202×603×21 30 0.547

202×723×21 30 0.547

3. Results in a non-rotating pool 

3.1 The basic axisymmetric steady flow

In this system, a horizontal temperature gradient is

imposed on the fluid in the radial direction, thus the

thermocapillary flow arises at any finite value of Ma.

When Ma is small, the thermocapillary flow is 2D

steady and axisymmetric, called as the “basic flow”.

Numerical simulation results with small values of Ma

are shown in Figs.2-4. Fig.2 shows the radial

distribution of the surface temperature at two

different ∆T. Thermal boundary layers appear near

the inner and outer walls. With increase of Ma (∆T),

the surface temperature gradient (∂T/∂R) in the mid

area increases. Fig.3-a shows the radial velocity u on

Fig.2 Surface temperature distributions as a function of radius R.

Dashed line: ∆T=2.0 K. Solid line: ∆T=4.0 K.

(a)

(b)
Fig. 3 Axisymmetric steady flow. (a). The radial velocity

component profiles versus radius r on the surface. (b) The radial

velocity component profiles versus axis z at r=30. Dashed line:

Ma=3.34×103 (∆T=2.0 K). Solid line: Ma=6.68×103 (∆T=4.0 K).

Fig.4 Streamlines and isotherms of the basic flow.

(a). Ma=3.34×103, ψmin=-26.47, ψmax=0.013.

(b). Ma=6.68×103, ψmin=-49.63, ψmax=0.029.

the surface as a function of r. The radial velocity

increases with increase in Ma due to the larger radial

temperature gradient on the surface. The radial

velocity u at r=30 is shown in Fig. 3-b as a function

of z. These profiles are similar to those of

thermocapillary flow in a rectangular pool
11)

. Fig. 4

shows the stream function and isotherms. It should be

noted that there appears a strong roll cell near the hot

wall driven by the large surface temperature drop

there. In contrast, a very large temperature drop near
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the cold inner wall causes a large surface velocity

peak near the cold wall, followed by a steep

deceleration down to zero at the cold wall as shown

in Fig. 3-a.

As Ma increases, a second roll cell is induced next

to the strong roll cell near the hot wall. However, for

the steady basic flow in this pool the maximum

number of the roll cells is two. If we conduct 2-D

simulations under much larger Ma values, 2-D flow

field becomes oscillatory and 7 or 8 roll cells are

propagating in the radial direction from the cold wall

to the hot wall.

3.2 Critical conditions for the incipience of HTW 

As Ma exceeds a certain threshold value, the flow

becomes unstable and oscillations start. The flow is

3D oscillatory. In the early period of the simulations,

local radial velocities and local temperatures indicate

temporal oscillations with very small amplitudes.

These oscillations increase their amplitude

exponentially with time following Eq. (9), as

described in our previous paper 
30)

.

])2[(exp)( 0 τfiβXτX ∗+= π (9)

The nondimensional frequency of oscillations ∗f is

defined as ν2dff =∗ , where f [Hz] is oscillation

frequency of local values.

For each value of Ma, we can determine the

growth rate constant β as a slope of a plot of the

logarithm of a local value of surface velocity as a

function of τ. A plot of β vs. Ma determines the

critical Marangoni number for the incipience of 3D

oscillatory flow as the Ma at which β becomes zero,

since the state β=0 corresponds to a marginal stability

limit. The wave number and phase velocity obtained

by a simulation conducted at a Ma close to Mac are

regarded as the critical wave number and critical

phase velocity. Thus determined critical conditions

are: Mac=8.396×10
3

(∆Tc=5.03K), mc=27 and fc
*
=

0.93. These are consistent within 2% of errors with

the results by LSA
36)

.

3.3 HTW patterns 

In order to express spatial distributions of oscillatory

variables, we introduce the “fluctuation of X” for the

3D case, δX3, where X stands for local temperatures,

velocities and other parameters. δX3 is defined as a

deviation of a local value from its average value

(averaged over the azimuthal direction), given by

( ) ( ) ( )∫−=
π

π

2

0
d,,,

2

1
,,,,,,3 θτzθrXτzθrXτzθrδX . (10)

Thus defined fluctuation of surface temperature

clearly shows that surface temperature pattern (HTW),

as shown Fig.5a. Generally, in the early periods of

calculation, several groups of HTW originate at

several locations and propagate in different directions.

Number of HTW groups decreases with the progress

of computation. However, two groups of HTW, with

the same wave number but opposite azimuthal

propagating directions, coexist for a considerably

long time but gradually one of them becomes weaker.

After a long time of calculation, at t=1140 s, only one

group of HTW is dominant, as shown in Fig. 5a. A

spatiotemporal diagram (STD: a plot of δΘ3 ( r=25, θ,

z=1,τ ) over a time span of 10 seconds) indicates the

propagation speed and counterclockwise traveling

direction of these patterns as shown in Fig. 5b. These

surface temperature patterns with curved arms are

approximately expressed as A(r)sin[m(ωτ+θ+ϕ(r))].

Here, A is the amplitude of the temperature

fluctuation, m the azimuthal wave number,

mfω ∗= π2 the phase velocity of the wave

propagation in the azimuthal direction and ϕ the

phase shift angle. A and ϕ  are function of r. In cases

with small Ma, the HTW patterns are clearly

observable only in the inner part of the pool, being

faded in the outer region. As Ma increases, HTW

becomes dominant over the whole area of the liquid

surface.

Fig. 5 Snapshot of the surface temperature deviation pattern when

Ma=1.0×104 (∆T=6.0K). Azimuthal wave number m=26.

(a). Surface temperature fluctuation (HTW).

(b). STD of δΘ at r=25 on the surface.

Fig.6 Surface pattern of the temperature deviation (a) and its STD

(b) at r=30, Ma=2.0×104(∆T=12.0 K).

Simulation with a larger Ma, such as

Ma=2.0×10
4
(∆T=12.0 K), indicates several groups of

HTW with different wave numbers coexisting in the

pool with different traveling directions throughout the

simulation (t ≤ 1000s), as shown in Fig.6. Typical

values of the wave number are m=28 for the HTW

dominating near the inner wall and m=46 for the

HTW dominating in the outer region. The

coexistence of different groups of HTW is also
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reported by Garnier et al.
24)

although his pool

geometry is different from that of the present system.

However, we did not observe “targetlike (coaxial)

waves” (m=0) propagating outward in the radial

direction, which were reported by Garnier and

Chiffaudel
24)

near the inner wall of his annular pool

which has much larger outer wall and smaller inner

wall radiuses (67.5 mm×4 mm). The larger inner wall

radius in the present system could produce smaller

surface temperature gradient near the inner wall than

its critical value for the incipience of the target-like

waves.

A set of simulations with different values of Ma,

ranging from 1.0×10
4

to 3.0×10
4
, reveals that a single

mode HTW occurs and their wave number slightly

increases with Ma in a slightly super critical region.

However, multi-mode patterns, such as shown in Fig.

6, appear at higher Ma range.

4. Effects of pool rotation

4.1 Basic flow in a rotating pool 

If Ma is less than a certain threshold value, the

thermocapillary flow in a rotating pool with Ta=0.322

(Ω=0.21rad/s in the anticlockwise direction) is steady

and axisymmetric. Numerical results indicated that

such a slow pool rotation gives practically no

influence on the basic temperature and radial velocity

distributions. However, there appears an azimuthal

velocity component v in the pool. Fig. 7 shows a

radial distribution of v on the surface and also a v

profile in z direction at r=30. Since both the depth

(a)

(b)
Fig.7 Azimuthal velocity distributions for Ta=0.322, Ma=8.35×103

(∆T=5.0K). (a) radial distribution of v on the surface. (b) profile of

v in z direction at r=30.

and rotation rate are small, the induced azimuthal

velocity is positive in almost whole part of the liquid

pool, except in limited areas near the bottom close to

the outside wall, not shown in the figure. 

4.2 Critical conditions for the incipience of HTW 

If Ma exceeds a certain threshold value, the basic

flow can’t keep its steady state against HTW. A set of

numerical simulations with Ta=0.322 determined the

critical conditions for the incipience of the HTW as

Mac=8.096×10
3
 (∆Tc=4.85K), mc=30 and ωc=- 0.176.

These are consistent with the result of LSA
36)

within

errors of less than 1%. It should be noted that the

negative value of ωc indicates the HTW propagates in

the clockwise direction, i.e., in the opposite direction

to the pool rotation. The propagation phase velocity

in a co-rotating coordinate system is ω=-0.176 and

the pool rotation angular velocity is Ta=0.322. Thus,

if observed from a fixed point, the HTW pattern is

rotating in the anticlockwise direction with a phase

velocity of 0.146. 

It can be seen that in a rotating pool, the Mac is

3.6% smaller than that of non-rotating case. This

implies that the pool rotation destabilizes the steady

axisymmetric basic thermocapillary flow. This trend

is similar to the numerical results of Sim and Zebib
33)

 although the heating direction is reversed. 

4.3 HTW in a rotation pool

In the non-rotating pool, according to the analysis by

SD
11)

and our previous numerical simulations
30)

,

propagation direction of HTW is either in the

clockwise or anticlockwise. Both cases should appear

in equal probability. However, the present numerical

simulations in a rotating pool over a whole range of

Ma values ranging between 8.76×10
3

and 2.0×10
4

indicate that the HTW propagate in the opposite

direction to the pool rotation, as shown in Fig.8-a and

8-b. This feature is confirmed by some simulations. A

simulation was conducted using an artificial HTW

patterns propagating in the same direction as the pool

rotation. After some calculation time, the propagation

direction was reversed. If the pool rotation direction

is reversed, the HTW also changes its azimuthal

propagation direction. As mentioned in the previous

section, pool rotation induces an azimuthal velocity

component. Due to this additional azimuthal velocity

component of the basic flow, the steady axisymmetric

basic thermocapillary flow becomes less stable

against a HTW-type disturbances propagating in the

opposite to the pool rotation, i.e., HTW propagating

opposing to the azimuthal velocity.

The result under a condition of Ma=1.34×10
4

(∆T=8.0 K) and Ta=0.322 shows a sudden increase of 

the azimuthal wave number m up to 54 from m=30

for Ma≤1.0×10
4
, as shown in Fig.9. In this case, thick

heavy short arm-like patterns appear near the inner
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wall and they tend to break up into two thinner

curved arms. Let us name them as finger-like arms.

Break up occurs at almost 2/3 of the thick wave

patterns. The total wave number of the thicker

patterns near the inner wall is m=32 on the other hand,

m=54 in the outer region. However, the frequencies

of the local temperature oscillation measured at those

two regions show no difference. Then the phase

velocity of the inner waves is larger than that of the

outer waves by a factor of ωinner/ωouter=54/32=1.69.

Due to the difference in the phase velocity between

the inner and outer waves, the finger-like breakings

of the thicker arms are not steady but propagate in the

azimuthal direction repeating alternate break-up and

recombination as seen in Fig.9a. After one finger-

shape wave separates into two thin long waves, the

preceding one quickly catches up and gradually links

to the preceding thick arm. After a very short time of

traveling, a reassembled finger-shape wave comes

out again. At the same time, Fig. 9-b (STD) indicates

there is a third group of HTW with m=18 propagating

along anticlockwise direction.

For a condition of Ma=2.0×10
4

(∆T=12.0 K) and

Ta=0.322, the azimuthal wave number m of HTW

dominated in the pool slightly decrease to 48

(Fig.10a). STD (Fig.10b) indicates another HTW

group of m= 5 traveling in the anticlockwise direction,

although indistinguishable in Fig.10a.

The azimuthal wave number, propagation phase

velocity of the HTW and their critical conditions in

the rotating and non-rotating pools are summarized in

Fig.11. In most cases, the azimuthal wave number

increases and the phase velocity |ω| decrease by the

Fig.8 Snapshot of the HTW (a) and its STD at r=25 on the surface

(b) when Ma=1.0×104(∆T=6.0K) and Ta=0.322. m=30.

Fig.9 Finger-shape HTW when Ma=1.34×104 and Ta=0.322. (a)

Snapshot of HTW, m=54 for dominant group, m=32 for inner

group and m=18 for fading group traveling along anticlockwise

direction. (b) STD on a circle with radius r=30 on the surface.

Fig. 10 Snapshot of the HTW (a) and its STD at r=25 on the

surface (b) when Ma=2.0×104 (∆T=12K), Ta=0.322.

Fig. 11 Ma dependencies of wave number m and phase velocity of

the HTW in rotating and non-rotating pools. The half filled marks

correspond to another group of the HTW. The solid marks

correspond the critical conditions.

pool rotation when Ma ranged from 8.76×10
3

to

3.0×10
4
.

5. Conclusions

Details of the three dimensional oscillatory thermo-

capillary flow in a shallow annular pool (Ri=20 mm,

Ro=40 mm and depth d=1.0 mm) of silicone oil (0.65

cSt, Pr=6.7) heated from the outer wall and cooled at

the inner wall, were investigated by numerical

simulation. In non-rotating annular pool, the critical

conditions for the incipience of HTW was determined

to be Mac= 8.396×10
3
, mc=27 and ωc=0.217. At

slightly super critical conditions, a single group of

HTW propagating in the azimuthal direction becomes

dominant after very long calculation time. At larger

Ma, several groups of HTW with different wave

numbers and different propagation directions coexist

in the pool. 

In a rotating pool at a rate of Ta=0.322, the basic

2-D steady flow becomes less stable against 3-D

oscillatory disturbances propagating in the opposite
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direction to the pool rotation. The critical conditions

are determined as Mac=8.096×10
3
, mc=30 and ωc=

-0.176. With Ma from 8.76×10
3
 to 2.0×10

4
, numerical

simulations indicate that the HTW always propagates

in the direction opposite to the pool rotation. This is

caused by the azimuthal component of the basic flow

induced by the Coriolis force. The result at

Ma=1.34×10
4

showed significant increase of wave

number up to m=54 in the outer region. The

finger-shaped patterns appear near the inner wall, this

is caused by the instability of wave pattern near the

inner wall. The result at Ma=2.0×10
4

showed two

groups of HTW with different wave numbers, i.e.,

m=48 propagating in the clockwise direction and m=5

propagating in the clockwise direction.

Numerical results indicate that the pool rotation

destabilizes the basic steady axisymmetric thermo-

capillary flow. At Ta=0.322 the critical temperature

difference is decreased about 3.6% from that for

non-rotating case.

References

1) R. Marek, J. Straub, Int. J. Heat Mass and Transfer, 44,

pp.619-632, 2001. 

2) C. Reynard, M. Barthes, R. Santini and L. Tadrist, Experimental

Thermal and Fluid Science, 29, pp.783-793, 2005 

3) C. Buffone, K. Sefiane and W. Easson, Physical Review E,

71, pp.1-8, 2005 

4) P. Carles, A. Cazabat, J. Colloid and Interface Science, 157,

pp.196-201, 1993. 

5) C. E. Chang, W. R. Wilcox, Int. J. Heat and Mass Transfer,

19, pp. 355-366, 1976. 

6) D. Scwabe, A. Scharmann, F. Pleisser, R. Oeder, J. Crystal

Growth, 43, pp. 305-312, 1978. 

7) D. C. Miller and T. L. Pernell, J. Crystal Growth, 58,

pp.253-260, 1982. 

8) K. -W. Yi, K. Kakimoto, M. Eguchi, M. Watanabe, T. Shyo

and T. Hibiya, J. Crystal Growth, 144, pp. 20-28, 1994. 

9) K. Kakimoto, H. Ozoe, Computational Materials Science,

10, pp.127-133, 1998. 

10) T. Azami, S. Nakamura, M. Eguchi, T. Hibiya, J. Crystal

Growth, 233, pp. 99-107,2001. 

11) M. K. Smith, S. H. Davis, J. Fluid Mech., 132, pp.119-144, 1983.

12) F. Daviaud, J. M. Vince, Phys. Rev. E, 48, pp.4432-4436, 1993. 

13) R. J. Riley, G. P. Neitzel, J. Fluid Mech., 359, pp.143-164, 1998. 

14) J. Burguete, N. Mukolobwiez, F. Daviaud, N. Garnier, A.

Chiffaudel, Physics of Fluids, 13, pp.2773-2787, 2001. 

15) M. A. Pelacho, J. Burguete, Phys. Rev. E, 59, pp.835-840, 1999. 

16) B. Ezersky, A. Garcimartin, H. L. Mancini, and C.

Perez-Garcia, Phys. Rev. E, 48, pp.4414-4422, 1993. 

17) Y. Kamotani, S. Ostrach and A. Pline, Physics of Fluids, 6, pp.

3601-3609,1994.

18) Y. Kamotani, S. Ostrach and J. Masud, Int. J. Heat and Mass

Transfer, 42, pp.555-564, 1998. 

19) Y. Kamotani, Adv. Space Res., 24, pp. 1357-1366, 1999. 

20) N. Mukolobwiez, A. Chiffaudel, F. Daviaud, Phys. Rev.

Letters, 80, pp.4661-4664, 1998. 

21) D. Schwabe, U. Moller, J. Schneider, A. Scharmann, Phys.

Fluids A, 4, pp.2368-2381, 1992. 

22) S. Hoyas, H. Herrero, A. M. Mancho, Phys. Rev. E, 66,

pp.057301-1-4, 2002. 

23) S. Hoyas, H. Herrero, A. M. Mancho, J. Phys. A: Math. Gen.,

35, pp.4067-4083, 2002. 

24) N. Garnier, A. Chiffaudel, The European Phys. J. B, 19,

pp.87-95, 2001. 

25) D. Schwabe, S. Benz, Adv. Space Rec. 29, pp. 629-638, 2002. 

26) D. Schwabe, A. Zebib, B-C. Sim, J. Fluid Mech., 491, pp.

239-258, 2003. 

27) J. Xu and A. Zebib, J. Fluid Mech., 364, pp. 187-209, 1998. 

28) B. C. Sim, A. Zebib, D. Schwabe, J. Fluid Mech., 491, pp.

259-274, 2003. 

29) Y. R. Li, L. Peng, Y. Akiyama, N. Imaishi, J. Crystal Growth,

259, pp.374-387, 2003. 

30) W. Y. Shi, N. Imaishi, J. Crystal Growth, 290, pp.280-291, 2006. 

31) A. Zebib, Physics of Fluids, 8, pp.3209-3211, 1996. 

32) H. F. Bauer, W. Eidel, Heat and Mass Transfer, 34, pp.79-90, 1998. 

33) B. C. Sim, A. Zebib, Physics of Fluids, 14, pp.225-231, 2002. 

34) J. P. Van Doormaal, G. D. Raithby, Numerical Heat Transfer,

7, pp.147-163, 1984. 

35) H. A. Van Der Vorst, SIAM J. Sci. Stat. Comput., 13, pp.

631-644, 1992. 

36) W. Y. Shi, M. K. Ermakov, N. Imaishi, J. Crystal Growth, in

press.

 
8 Thermocapillary convection in a shallow annular pool of silicone oil 




