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Conventional odor discrimination is generally performed by gas chromatography–mass 

spectrometry (GC–MS) that identifies specific marker molecules. Such marker identification process 

is, however, labor-intensive, and the limited number of identified marker molecules is often 

insufficient to discriminate complex odors. In this study, we have demonstrated a facile method for 

discriminating complex odors with GC–MS data by combining texture image analysis (TIA) and 

machine learning (ML). We extracted various texture features (i.e., contrast, energy, homogeneity, 

correlation, dissimilarity and angular second moment) of two-dimensional (2D) MS maps by TIA, and 

used them as datasets for ML. Each texture feature contains a lot of molecular information appeared 

in 2D MS maps, and thus serves as an effective parameter for discriminating complex odors. Based 

on this method, we successfully performed the discrimination of breath samples collected from the 

persons of different blood glucose levels with higher performances and reliability than the 

conventional approach. 
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1. Introduction 

Odor analysis is a promising technique for 

non-invasively characterizing a subject based 

on the species and the concentrations of 

contained volatile chemical compounds. This 

type of analysis has recently attracted much 

attention in various scientific and industrial 

fields such as pathology,1-3) pharmacology,4,5) 

healthcare,6-12) food industry,13-15) fragrance 

and perfume industry,16-18) environmental 

conservation,19-21) agriculture22-24) and so 

on.25-27) The odor analysis is performed by 

two-step process consisting of i) a marker 

molecules identification and ii) a 

discrimination or classification of odors based 

on the identified specific markers. In odor 

analysis, GC–MS is conventionally employed 

for identifying marker molecules.28-33) However, 

the marker identification process is 

labor-intensive, and limited number of 

identified marker molecules is often 

insufficient to discriminate complex odors. 

The texture image analysis (TIA) is a useful 

way to effectively collect large amount of 

information in an image.34,35) TIA has recently 

been applied to medical image analyses and 

successfully demonstrated its performances on 

the tumor identification and the radiotherapy 

beyond the sense of human eyes.36,37) Despite 

the advantage of TIA, it has rarely been 

applied to odor discrimination. These 

backgrounds motivated us to investigate the 

applicability of TIA to the discrimination of 

complex odors. 

In this study, we demonstrated the 

discrimination of human breath samples with 

GC–MS data by combining texture image 

analysis and machine learning (TIA–ML). In 

this method, various texture features were 

extracted from two-dimensional (2D) MS maps. 

Each texture feature contains a lot of 
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molecular information appeared in 2D MS 

maps, and thus serves as an effective 

parameter for discriminating complex odors. 

Based on this method, we successfully 

performed the discrimination of breath 

samples collected from persons with different 

blood glucose levels. The performance and 

reliability of the TIA–ML method were 

discussed in comparison with those of a 

conventional marker identification approach. 

  

2. Experimental 

2.1 Collections of Breath Samples and Blood 

Glucose Data 

The human breath samples were collected 

from healthy volunteers under fasting 

condition (8–10 h). To control the blood glucose 

levels, the volunteers took a 150 mL aqueous 

solution of 50g glucose (TRELAN-G50, AY 

Pharmaceuticals). The blood glucose level of 

volunteers was measured by a glucometer with 

conventional fingerstick method and a flash 

glucose monitoring system (FreeStyle Libre, 

Abbott). Each 50 breath samples were 

collected from the persons with high blood 

glucose level (HBG, ≥ 125 mg/dL) and low 

blood glucose level (LBG, < 120 mg/dL). The 

exhaled breath was collected using a 10 L gas 

sample bag (Smart bag PA, GL Sciences). The 

500 mL of collected breath was then 

transferred to an adsorbent-filled tube (Packed 

Liner with Tenax GR, mesh 80/100 #2414-1021, 

GL Science Inc.) using an air pump at the 

pumping rate of 50 mL/min. The sample tubes 

were sealed and stored in a refrigerator at 

–18 °C until they were used for the GC–MS 

measurements.  

 

2.2  Breath Component Analysis by GC–MS 

Total ion current (TIC) chromatograms and 

MS chromatograms of the breath samples 

were obtained by GC–MS (Shimadzu, 

GCMS-QP2020) equipped with an inlet 

temperature control unit (OPTIC). A InertCap 

5MS/NP capillary column (60 m length, 0.25 

mm inner diameter, 1 μm thickness, GL 

Sciences) was used, and the temperature 

profile of GC oven was set as follows: (i) held at 

40 °C for 5 min, (ii) elevating to 280 °C at a 

rate of 5 °C/min, and (iii) held at 280 °C for 5 

min. The inlet temperature was set at 300 °C 

with split-less mode. The temperatures of the 

ion source and the GC-to-MS junction were 

both set at 200 °C. The vacuum pressure in the 

ionization chamber was 9.9 × 10−5 Pa. He 

(99.9999% pure) was used as a carrier gas in 

column and a purge gas, and the flow rates 

were set at 1 mL/min and 5 mL/min, 

respectively. The MS measurements were 

carried out with a single quadrupole MS 

analyzer in a mode of electron ionization with 

positive ion analysis and the full scan data 

acquisition. A mass to charge ratio (m/z) was 

characterized in the range of 35–300. The 

obtained data were analyzed by GCMS 

Solution ver. 4.45 SP1. 

 

2.3  Texture Image Analysis and Machine 

Learning of 2D GC–MS Data 

GC–MS data was analyzed by the TIA–ML 

method and the conventional marker 

identification approach. The workflows of the 

TIA–ML method and the conventional marker 

identification approach are shown in Figs.1(a) 

and (b). For the TIA–ML method, firstly, all 

MS chromatograms, i.e., the series of retention 

time–signal abundance data, were combined 

and converted into a 2D MS map as the 

functions of m/z (x-axis) and retention time 

(y-axis). The range of m/z and retention time 

used for analysis were 35–300 and 3–58 min, 

respectively. The image resolution of 2D MS 

map was set to be 1300 × 3700 pixels. The 

intensity of 2D MS map was scaled by a power 

law ( = 0.5), displayed by 256 colors, and 

normalized via the highest peak using 

Matplotlib ver. 3.5.1. To investigate the 

robustness of the TIA-ML method, the 

influences of position alignment and noise 

reduction in 2D MS map were examined. The 

details of such image processing for 2D MS 

map can be seen in our previous study.38) 

To extract texture features of the 2D MS 

map, TIA was performed with gray-level 

co-occurrence matrix (GLCM)39) using 

Scikit-image ver. 0.19.1. The GLCM functions 

characterize the textures of an image by 

calculating the number of pairs of pixels with 

specific values in a specified spatial distance, 

creating GLCM maps, and then extracting 

statistical texture feature values from the 

matrix of GLCM map. In this study, the 

distance of 1 pixel and the angle of 45° were 

used. GLCM maps of contrast, energy, 

homogeneity, correlation, dissimilarity, and 

angular second moment (ASM) were created 

from 2D MS map using the formulas shown in 

Table 1. Then the texture feature was obtained 

by a summation of the feature values of all 

pixels in a GLCM map. The extracted texture 

features were normalized and used as datasets 
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for ML. 

For conventional marker identification 

approach, peaks were detected in TIC  

chromatograms and their intensities were 

used as datasets for ML. The peak detection 

was performed by CentWave method with the 

parameters of ppm=10, peak width 

minimum=1, peak width maximum=2, 

snthresh=100, mzdiff=6, prefilter scan 

number=0.01, prefilter scan abundance=3, and 

bw=100, which were optimized by using the 

method reported by Manier et al.40) In this 

study, for the simplicity, all detected peaks 

were used as the marker molecules for the 

discrimination of human breath samples, 

while the marker molecules are identified by 

carefully screening the detected peaks in the 

conventional odor discrimination study. 

ML was conducted by a neural network 

algorithm. For ML, the datasets were divided 

into training data and testing data with a ratio 

of 70% and 30%, respectively. For enriching 

the training datasets while preventing 

overfitting, the data augmentation 

technique38) was employed. In this technique, 

the intensity of 2D MS maps was randomly 

modulated in the range of 0.0–10.0%. 

Consequently, the number of data increased by 

100 datasets. The two-levels classification of 

breath samples (i.e., HBG and LBG) was 

performed with a multilayer perceptron, which 

is a class of feedforward artificial neural 

network, using Scikit-learn ver. 1.0.2. The 

classifiers were optimized by the 

hyper-parameters and operated with the 

parameters of hidden_layer_sizes = (128, 128), 

activation = 'relu', solver = 'adam', alpha = 1, 

max_iter = 1000 for the TIA-ML method and 

hidden_layer_sizes = (256, 512), activation = 

'relu', solver = 'adam', alpha = 1, max_iter = 

3000 for the conventional marker 

identification approach. 

The odor discrimination performances in the 

TIA–ML method and the conventional marker 

identification approach were evaluated by 

calculating and comparing their classification 

accuracy, sensitivity, and specificity. The 

averaged area under the curve of receiver 

operating characteristic curve (AUC–ROC) 

was utilized to evaluate the reliability of 

 
Fig.1 Graphical workflows of (a) texture image analysis (TIA) and (b) conventional marker identification approach for 

discriminating complex odors in GC–MS data. 
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Table 1 Texture features and formulas 

Texture feature Formula

Contrast             

   

     

Energy       
  

   

     

 

Homogeneity  
   

        
 

   

     

Correlation      

          

    
     

  

   

     

Dissimilarity            

   

     

ASM

(Angular second moment)
      

  

   

     

 

classifier. The significance of each feature for 

the discrimination of human breath samples 

was evaluated with the p-value obtained in 

t-test. 

 

3.  Results & Discussion 

3.1 2D MS Map and Texture Features of 

Human Breath Samples 

Figs.2(a) and (b) show the representative 

TIC chromatograms and 2D MS maps of 

breath samples collected from the persons 

with two different blood glucose levels (i.e., 
HBG, ≥ 125 mg/dL and LBG, < 120 mg/dL). 

TIC chromatogram is a primary form of 

GC–MS data used to identify marker 

molecules in the conventional approach. Each 

peak in the TIC chromatogram corresponds to 

a component molecule species in the tested 

breath, and each bright spot in the 2D MS map 

corresponds to a fragment peak of a component 

molecule species. Contrary to the TIC 

chromatograms, where the peak intensity can 

be quantitatively compared, the 2D MS maps 

were hardly distinguishable to the human 

eyes. 

Next, we extracted the features of GC–MS 

data. The texture features of the 2D MS maps 

were extracted by TIA with GLCM. Fig.3 

shows the GLCM maps for the breath samples 

collected from the persons of HBG and LBG. 

Each texture feature was then obtained by a 

summation of feature values of all pixels in a 

GLCM map. The extracted texture features 

were normalized and used as datasets for ML. 

We created a classifier by ML with a neural 

network algorithm. As a comparison, we also 

created a classifier by the conventional marker 

identification approach. For this purpose, we 

identified the peaks of marker molecules in the 

TIC chromatograms, and the peak intensities 

were used as datasets for ML. By using the 

classifiers, we calculated the classification 

accuracies for the test breath samples. 

 

3.2 Classification Performance of TIA-ML 

Method for Human Breath Samples 

Fig.4(a) shows the classification accuracy of 

breath samples of HBG and LBG, plotted as a 

function of the number of features employed 

for creating the classifier. The employed 

features were arranged in ascending order of 

the p-values. In the conventional marker 

identification approach, the classification 

accuracy was as low as 20.0% when employing 

a single feature. It tended to increase with 

increasing the number of employed features 

and reached to 100% with 50 features. On the 

other hand, in the TIA–ML method, the 

classification accuracy was 83.3% with a single 

feature, and reached to 100% with two 

features. These results clearly indicated that 

that the TIA–ML method provided a higher 

classification accuracy with fewer features 

than the conventional marker identification 

approach. Note that both of the specificity and 

sensitivity of the TIA–ML method reached to 

 
Fig.2 (a) TIC chromatograms and (b) 2D MS maps of 

breath samples collected from the persons with 

high blood glucose level (HBG, ≥ 125 mg/dL) and 

low blood glucose level (LBG, < 120 mg/dL), 

respectively. For visibility, the 2D maps are 

shown in the restricted range (m/z: 30−210, 

retention time: 3−43 min). 
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100% with two features. Such excellent 

discrimination performance of the TIA–ML 

method can be interpreted by the fact that 

each texture feature contains a lot of 

molecular information. 

 

3.3 Reliability of TIA-ML Method  

  To confirm the validity of above-mentioned 

classification performance, we evaluated the 

reliability of classifiers. Fig.4(b) shows the 

averaged AUC–ROC for the TIA–ML method 

and the conventional marker identification 

approach, plotted as a function of the number 

of features employed for creating the classifier. 

As well as the trends of classification accuracy 

in Fig.4(a), the AUC–ROC tended to increase 

by accompanying with the increase of the 

number of employed features. The AUC–ROC 

in the TIA–ML method reached to 1.00 with 

two features while that in the conventional 

marker identification approach was as low as 

0.47. These results highlighted that the 

TIA–ML method showed better performances 

in both the accuracy and reliability for the 

discrimination of the human breath samples. 

 

3.4 Advantage of Texture Feature 

Here we discuss the contribution of each 

feature on the classification results in Fig.4(a). 

In the conventional marker identification 

approach, the classification accuracy 

decreased with increasing number of features 

due to a so-called overlearning effect, in which 

the performance of classifier deteriorates by 

learning disturbing features. Interestingly, 

such an overlearning effect did not occur at all 

in the TIA–ML method. This indicates that all 

 

Fig.3 GLCM maps for texture features of contrast, 

energy, homogeneity, correlation, dissimilarity, 

and ASM. 

 
Fig.5 Radar charts for the feature values used in (a) the 

TIA and (b) the conventional marker 

identification approach, respectively. In these 

charts, the mean feature values of breath samples 

collected from the persons of HBG and LBG are 

plotted. 

 

Fig.6 Box-and-whisker plots for the texture features of 

the breath samples collected from the persons of 

HBG and LBG. 

 

Fig.4 (a) The classification accuracy of the breath 

samples and (b) the averaged AUC-ROC for the 

TIA–ML method and the conventional marker 

identification approach, plotted as a function of 

the number of features employed for creating the 

classifier. 
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texture features positively contributed to the 

classification. 

 To gain an in-depth understanding as to 

the role of extracted texture features, we 

quantitatively compared their feature values 

on the human breath samples of HBG and 

LBG. Figs.5(a) and (b) show the radar charts 

of the feature values for the TIA–ML method 

and the conventional marker identification 

approach, respectively. In these charts, the 

mean feature values are plotted. Note that the 

features are arranged in ascending order of the 

p-values and displayed clockwise on the charts. 

We found that there was no clear relationship 

between the substantial difference in the 

feature values and the arrangement order of 

the features in the TIA–ML method. A similar 

trend was also found in the chart of the 

conventional marker identification approach. 

Fig.6 shows the box-and-whisker plots for the 

texture features in the human breath samples 

of HBG and LBG. The results showed that the 

distributions of feature values more clearly 

separated for the features of earlier order. On 

the other hand, the distributions of feature 

values overlapped in some texture features 

such as dissimilarity, contrast, energy and 

ASM. Considering the fact that no overlapping 

occurred in either the classification accuracy 

or the AUC–ROC, the classification error in 

each texture feature could be negligible in the 

assembled features (i.e., combination of 

texture features). Such a beneficial role of 

texture feature might be available only when 

more maker molecules than contaminant 

molecules occupy the analyte odors. 

 

3.5 Robustness of TIA–ML Method 

Finally, we investigated the robustness of 

the TIA–ML method by examining the 

influences of position shift and noise in 2D MS 

maps. The position shift of spots occurs when a 

liquid phase of GC column deteriorates over 

time. The noise is caused by the deterioration 

of GC column and/or the contaminant 

molecules (i.e., non-marker molecules) in 

analytes. Fig.7 shows the box-and-whisker 

plots for representative texture features of the 

human breath samples of HBG and LBG when 

performing the image processing. As examples, 

the effects of position alignment and noise 

reduction in correlation and homogeneity are 

shown. The essential importance of position 

alignment and noise reduction was 

demonstrated in our previous study for the 

identification of marker molecules by image 

analysis.38) We found that the significance of 

each texture feature (i.e., p-value) was in the 

almost same order, regardless of the position 

alignment and/or the noise reduction. These 

results are reasonably interpreted by the 

principle of TIA, where the spatial relationship 

 
Fig.7 Box-and-whisker plots for the representative texture features (correlation and homogeneity) of the breath samples 

collected from the persons of HBG and LBG when performing the image processing (position alignment and noise 

reduction) with various combinations. 
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of pixels is emphasized in the texture features. 

It should be worth describing that the 

robustness to position shift and noise in TIC 

chromatograms is not available in the 

conventional marker identification approach. 

As such, the data analysis process in the 

TIA–ML method can be simpler than that in 

the conventional marker identification 

approach and thus the high-throughput 

discrimination of complex odors would be 

expected by the TIA–ML method. 

 

4. Summary and Conclusion 

We demonstrated a facile method for 

discriminating complex odors with GC–MS 

data by combining texture image analysis and 

machine learning (i.e., TIA–ML method). In 

the proposed method, various texture features 

(i.e., contrast, energy, homogeneity, correlation, 

dissimilarity and ASM) of 2D MS maps were 

extracted by TIA with GLCM and used as 

datasets for ML. Contrary to the conventional 

marker identification approach, which relies 

on the limited number of marker molecules, 

each texture feature contains a lot of 

molecular information appeared in the 2D MS 

map, and thus served as an effective 

parameter for discriminating complex odors. 

By the TIA–ML method, we successfully 

performed the discrimination of breath 

samples collected from the persons of different 

blood glucose levels with higher performances 

and reliability than the conventional marker 

identification approach. While this study was 

limited to a two-levels classification, the 

TIA–ML method is essentially applicable to a 

multilevel classification. Thus, we believe that 

the TIA–ML method paves a novel avenue in 

complex odor analysis. 
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