scroll


研究室・教員・研究テーマの検索

ホーム > 学府について > 研究室・教員・研究テーマの検索

検索キーワード:高専連携 

42 研究室が該当しました。

ブックマークリストからオンライン面談や研究室訪問の申し込みが出来ます。

[Ⅱ類] 電離反応工学研究室

デバイス理工学メジャー


准教授 山形幸彦 , 准教授 堤井君元,  
研究室サイトへ

電離反応を利用したプラズマプロセスは、通常の環境下では起こらない物理・化学的効果を発現可能であり、エレクトロニクス・材料分野から環境・エネルギー分野まで、持続可能社会を支える最先端技術です。私たちはプラズマやレーザーを駆使した①各種製造プロセスの開発・最適化やデバイス性能の解析、②過酷な環境下で使えるエレクトロニクス材料・デバイスやヒトにやさしいバイオ機能材料・デバイスの開発など、次世代を切り拓く先端的研究に取り組んでいます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●プラズマ/レーザープロセスのレーザー計測法によ るパラメータ計測と反応制御
●パルスレーザー計測法による窒化物半導体の温度/ 歪みの非接触測定法の開発
●ナノ構造カーボン材料の電子エミッターへの応用
●ワイドバンドギャップ材料を用いた高温ダイオード および高温キャパシターの開発
●超硬質材料の表面機能制御とバイオ機能評価


[Ⅲ類] 環境流体システム学研究室

地球環境理工学メジャー


教授 杉原裕司 , 助教 山口創一,  
研究室サイトへ

地球環境流体圏の多様な課題について環境流体力学の立場から 研究しています。特に、大気-海洋間のCO2交換に関わる海面境界 過程、ローカルリモートセンシングと連携した流体情報学、沿岸海 域の潮流・水質の変化を正確に予測する高解像度海況予測モデ ルと沿岸生態系モデル、潮流エネルギー賦存量の高精度評価に 関する研究に取り組んでいます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


◼ 大気-海洋間のCO2交換機構に関する流体工学的研究
◼ ローカルリモートセンシングと環境情報の統合化
◼ 沿岸海洋生態系の変動機構の解明と予測技術の開発
◼ 沿岸海洋における高解像度海況予測技術の開発
◼ 潮流エネルギー賦存量の高精度評価に関する研究


[Ⅱ類] パワーデバイス工学研究室

デバイス理工学メジャー


教授 齋藤渉,  
研究室サイトへ

私達の生活は電気エネルギーを使うことで成り 立っており、電気使用量は増加の一途をたどって います。環境・エネルギー問題の対策として、ク リーンエネルギーである電気エネルギーの使用比 率を上げることは必須です。特に、CO2を排出し ない再生可能エネルギーによる発電を増やしてい くことは世界的に取り組まれています。
電気エネルギーを制御により有効利用する技術 として、パワーエレクトロニクスという分野があ り、パワーエレクトロニクス回路において、電気 エネルギー制御に用いられる半導体デバイスをパ ワーデバイス、もしくは、パワー半導体デバイス と呼びます。
本研究室では、低炭素社会の実現に向けてパ ワー半導体デバイスの研究開発を行い、新たな電 力ネットワークの創生を目指しています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●新規パワー半導体デバイスの開発
●パワー半導体インテリジェント制御技術の開発
●高機能パワー半導体モジュール集積技術の開発


[I類] 機能材料物性学研究室

材料理工学メジャー


教授 島ノ江憲剛 , 准教授 渡邉賢 , 助教 末松昂一,  
研究室サイトへ

金属酸化物を中心した無機材料の精密合成や構造制御を原子・ナノレベルで行うことにより、バルク、表面,界面の機能を最大限に引き出すとともに新たな機能も付加した、最先端のガスセンサ、次世代の全固体電池、超高性能酸素分離膜など、これまでにない新しい化学機能デバイスを創製する。これらの研究開発では、材料・デバイスの構造・物性の高度な解析により機能発現メカニズムを理解するとともに、先進デバイスの実現に資する設計指針を構築し、産業展開する。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●精密ナノ粒子創成技術の開発と酸化化物半導体、固体電解質を用いた高機能ガスセンサへの応用研究
●セラミックス焼結技術を応用した次世代全固体電池作製プロセスの開発と材料設計の構築
●新規酸化物イオン導電体、混合導電体を用いた高性能酸素分離膜に関する研究


[I類] 機能無機材料工学研究室

材料理工学メジャー


教授 永長久寛 , 准教授 北條 元,  
研究室サイトへ

触媒はエネルギー・ 物質変換と環境保全のためのキーマテリアルである 。 当研究室では金属のナノ粒子や複合酸化物などの無機系固体触媒材料の設計 ・ 開発から電子顕微鏡 、 シンクロトロン放射光を利用した触媒の静的 ・ 動的キャラクタリゼーション手法の開発を目指している 。 固体表面上の化学反応をつかさどる原理を解明する基礎研究から産業界との連携による実用化研究まで 、 一貫した触媒化学の教育研究を行っている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●高い触媒特性を示す金属担持触媒 、 金属酸化物触媒の開発
●無機固体材料の構造 ・ 機能解析および触媒特性との相関性の解明
●電子顕微鏡 、 シンクロトロン放射光を利用した新規な触媒構造 ・ 反応解析法の開発


[I類] 表面物質学研究室

材料理工学メジャー


准教授 中川剛志,  
研究室サイトへ

デバイスの微細化が進み固体表面の制御が重要となっているが 、 物質の表面は内部と異なった構造 ・ 物性を示すことが多い 。 本研究室では 、 固体表面の構造を原子レベルで解き明かし 、 電子状態や磁性などの物性評価へと展開することを目標としている 。 このため 、 低速 電子回折 LEED 、 走査トンネル顕微鏡STM 、 電界イオン顕微鏡 FIM などの原子レベルの表面構造解析に適した装置を用いて研究を行っている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●半導体、金属表面上の単原子層作製と構造・物性
●タングステンなどの針先端の原子レベル先鋭化と表面微小領域の構造解析法の開発
●磁性超薄膜での高保磁力や磁気相転移の研究


[Ⅲ類] 複雑系社会環境科学研究室

機械・システム理工学メジャー


教授 谷本潤,  
研究室サイトへ

環境問題解決のための方策を考えるためには、単体物理システム を切り出して考究するアプローチではなく、環境、それを操作する 人間、人間がマスとなった社会システムを複雑系として相互浸透 的にモデル化することが必要です.応用数学科学を道具立てに複 雑社会システムの機構を解明する研究にチャレンジしています.

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


◼ 複雑系科学によるジレンマ解消機構の探究
◼ 感染症伝播予測に関する研究
◼ 交通流解析に関する研究


[Ⅱ類] 非線形物性学研究室

デバイス理工学メジャー


准教授 坂口英継 , 准教授 森野佳生,  
研究室サイトへ

カオス、フラクタルなどの非線形科学や多数の 要素が強く相互作用する複雑系に関する数値シ ミュレーションを行っている。図1は原子気体を 超低温にしたときに現れるボーズ凝縮体がつくる 渦ソリトンを表している。図2は粘菌と呼ばれる アメーバ様単細胞生物の集合過程に現れるスパイ ラルパターンを示している。粘菌は自身が出す化 学物質の波によりスパイラルの中心に集まる。図 3は九州の主な発電所と送電線のネットワークを 示す。電力網を非線形振動子結合系と考えブラッ クアウトが進行する様子を数値計算している。図 4は時系列データを予測する集合型アルゴリズム であり、非線形システムに対するデータ科学的解 析や動的頑健性の解析等も行っている。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●ボース・アインシュタイン凝縮体の渦ソリトン
●細胞性粘菌の集合ダイナミクス
●非線形振動子の集団同期
●動的システムの頑健性解析
●非線形システムのデータ科学的解析


[I類] プロセス設計工学研究室

材料理工学メジャー


教授 寒川義裕 , 助教 草場彰,  
研究室サイトへ

近未来の新たな生活様式、産業活動スタイル(Society 5.0)への移行が推し進められている折から、我々人類は新型感染症の発生・拡大を経験し、その取組みの社会的意義が益々高まっている。材料開発においても AIを活用した「マテリアル革新力強化」の在り方が問われている。本研究グループでは計算科学とデータ科学に立脚した『材料プロセス・インフォマティクス』と言う学問領域を確立し、これからの時代に即した新たな材料開発・産業活動スタイルを提案する。現在、2014年ノーベル物理学賞の受賞対象材料となった窒化物半導体の更なる高品質化、次世代パワーデバイス等への応用を推し進めている。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●マルチフィジクス結晶成長シミュレーション ●GaN パワーデバイス開発 ●AlGaN 深紫外レーザー開発


[Ⅱ類] 電力変換システム工学研究室

デバイス理工学メジャー


教授 西澤伸一,  
研究室サイトへ

私達の生活・産業は、高度情報・電力化社会へ 向かい、エネルギー消費量の増大が進んでいます。 一方、COP21に代表される温暖化ガス排出削減、 地球環境・資源制約などのためにエネルギー消費 の抑制が求められています。この矛盾は、社会イ ンフラからエンドユーザ機器,生活から産業、あ らゆるスケール・レベルで共通の課題です。
この課題を解決するため、パワーエレクトロニ クスは、マイクロエレクトロニクス、材料技術、 情報技術などと融合した新しい技術領域へ変貌し つつあります。本研究室では、再生可能エネル ギーの積極的導入、情報化社会からIoT、E-モビ リティなどのメガトレンドにあわせて、この新し いエレクトロニクスとそのシステム(グリーンエ レクトロニクス)の実現を目指して、電力エネル ギー有効利用の視点に立ち、研究を進めています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●パワー半導体材料・デバイスプロセスの研究
●パワエレ受動部品・集積化技術の研究
●パワエレ信頼性・設計技術の研究


[I類] 機能有機材料化学研究室

化学・物質理工学メジャー


准教授 藤田克彦,  
研究室サイトへ

有機EL ・ 有機トランジスタなどの高機能有機デバイス開発を実施している 。 有機半導体材料 、 デバイス作製プロセス 、 デバイス動作機構の 3 方向から多角的に高性能化指針の解明を行っており 、 特に有機半導体の利点である塗布による素子作成 、 プリンテッドエレクトロニクスに注力している 。 独自技術による塗布でのn型ドーピング法を確立し 、 キャリアドーピングの基礎物性の解明とともに 、 新規pn接合デバイスの開発を進めている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●キャリアドープ pn 接合デバイスの開発
●高効率塗布型有機 EL の材料開発
●有機太陽電池の高効率化


[Ⅱ類] 電子物性デバイス工学研究室

デバイス理工学メジャー


教授 吉武剛,  
研究室サイトへ

センシング材料 とデバイス 、 さらにはデバイス 創製 のための 要素技術 を 含 めたプロセスと 評価技術に関する研究 を 、 材料創製 からその 評価 、さらにはデバイス 作製 までを 一貫 して 行 うことで 遂行している 。 センシング 材料 の 創製 にはスパッタ 法 、レーザーアブレーション 法 、 同軸型 アークプラズマ 堆積法 などの 物理気相成長法 を 主 に 用 い 、 デバイス 創製 のための 新 しい 要素技術 としてレーザーを 駆使 した 方法 の 開発 に 積極的 に 取 り 入 れている 。 他大学・ 高専 からの 進学者 と 外国人留学生 が 多 く 様々 な 出身者 が 集 まった 研究室 である 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●ダイヤモンドや 酸化 ガリウム 等 のワイドギャッ プ 半導体 による 極環境 でも 動作 するセンサーお よび 光電変換素子 の 開発
●ダイヤモンド 中 への 量子 センターの 創製 のため のプロセス 開発 とその 量子 センサーおよびバイ オマーカーとしての 応用
●半導体 へのスピン 注入 とそれに 基 づく 半導体 ス ピンデバイスの 創成


[I類] 材料構造制御学研究室

材料理工学メジャー


教授 飯久保智,  
研究室サイトへ

構造・機能性材料の開発には用途に応じてさまざまな性質が求められるため、計算科学を利用して効率よく開発を進めることが成否をわけると言っても過言ではありません。私たちは物質内部の電子状態を明らかにする「第一原理計算」、物質の地図とよばれる「状態図」などを駆使して、新物質探索法や材料組織制御法を研究しています。具体的には太陽電池、熱電材料、二次電池などに適用し、物性物理学と材料組織学の観点から、次世代の構造・機能性材料の開発を行っています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●第一原理計算、計算状態図を利用した新物質探索法の開発
●熱力学データを活用した材料組織の制御法の開発
●量子ビーム(X線、中性子線)を用いた結晶構造解析


[I類] 分子計測学研究室

化学・物質理工学メジャー


教授 原田明 , 准教授 薮下彰啓 , 助教 石岡寿雄,  
研究室サイトへ

最先端の研究データを取得するためには,新しい分析法の開発は必要不可欠である。本研究室は,分子の構造・反応・機能を研究するための新しい計測法を創案・開発し,物質科学に関連して社会的に問題となっている諸問題解 決への応用を念頭に,基礎科学的に興味深い諸課題の解明にも携わることを目的としている。特に,レーザー光・シンクロトロン光を活用した分子の新しい分光学的計測法を開拓し,基礎的な分析化学・物理化学から,環境化学・生 化学・宇宙化学まで広く応用展開している。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●レーザー光やシンクロトロン光の照射で生じる”熱・イオン・蛍光・高調波”等を利用した超高感度・高精度計測法の開発
●分子鋳型電極を用いた分子分析法の開発
●水,氷面などの微小・極限環境内での分子挙動,生体内・環境中における諸科学現象の解明


[I類] 極限材料工学研究室

材料理工学メジャー


准教授 橋爪健一,  
研究室サイトへ

原子力・ 核融合 ・ 水素 ・ 放射線 ・ 太陽光等のエネルギー利用を念頭に 極限環境中 高温 ・ 高腐食 ・ 高放射線環境下など の物質 ・ 材料の研究を行っている 。 特に 、 物質 ・ 材料中の水素同位体 軽水素 、 重水素 、 三重水素 トリチウムの振舞い 溶解 、 拡散 、 透過など を明らかにすることを主要テーマとしている 。 水素は最も基本的な元素の一つであるが 、 その構造の単純さ 、 宇宙空間にも 、 地球上にも多量に存在する量的な豊富さ 、 また 、 エネルギー関連の物質 ・材料中で様々な振舞いをすることから 、 興味の尽きない元素である 。 本研究室では 、 このような水素の物質 ・ 材料中挙動とエネルギー材料開 発のための基礎学理をもとに教育を行っている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●原子炉材料 、 核融合炉材料 、 水素エネルギー材料の研究開発
●金属 、 セラミックス材料中の水素同位体の挙動研究
●放射線エネルギー利用研究


[I類] 機能分子工学研究室

化学・物質理工学メジャー


教授 菊池裕嗣 , 准教授 奥村泰志 , 助教 阿南静佳,  
研究室サイトへ

新規な分子設計に基づいた液晶、 キラル化合物 、 高分子 、 金属有機構造体などを組み合わせて自己組織的に形成される複合系を設計し 、 偏光顕微鏡 、 共焦点顕微鏡 、 電子顕微鏡や超解像顕微鏡などを駆使した構造観察およびDSC 、 誘電緩和 、 電気光学応答 、 第二次高調波発生 など各種物性測定による知見に基づいて構造や秩序を高度に制御すると共にデバイス化することで 、 低環境負荷で高性能な新材料の創製と様々な分野への応用を目指している 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


● ナノ構造化ソフトマターの構造観察、秩序形成 メカニズムの解明と新規構造様式の創出
● 物質融合による新規液晶相の創製と電気光学・ 電気化学デバイスへの応用
● 比誘電率が約1万の強誘電性液晶材料の機構 解明と多様な分野への応用


[Ⅱ類] エネルギー化学工学研究室

プラズマ・量子理工学メジャー


准教授 片山一成 , 助教 大宅諒,  
研究室サイトへ

魅力的な次世代エネルギーシステムの開発を目 指し、プロセス工学や熱物質移動工学分野の教育 と研究に取り組んでいます。基礎実験を通じて現 象をモデル化し、これに基づく数値シミュレー ションを活用して最適なシステムを追究します。
最先端科学技術の開発領域では、これまでの知 見のみでは現象を予測することが難しいような状 況が多く現れます。本研究室では、プラズマや超 臨界二酸化炭素と固体壁との界面や、液体金属・ 溶融塩など高温融体の流動場、中性子による核変 換反応場など、特殊な環境下での物質移動現象の 解明とそのモデル化に挑んでいます。また、放射 性物質であるトリチウムの環境動態や、プラズマ を用いた水素製造等にも取り組んでいます。これ らの知見は、核融合炉や次世代原子炉システム、 水素エネルギー利用社会の実現に生かされます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●核融合発電プラント燃料循環システムの開発
●土壌及び植物における物質移動現象のモデル化
●液体金属及び溶融塩循環システムの開発
●プラズマや触媒等を用いた水素抽出技術の開発


[Ⅲ類] 宇宙流体環境学研究室

地球環境理工学メジャー


教授 羽田亨 , 准教授 松清修一 , 助教 諌山翔伍,  
研究室サイトへ

宇宙空間は希薄なプラズマ(電離した気体で流体の一種)で満たされています。プラズマの源は太陽をはじめとする星々です。恒星はもちろん、身近な地球などの惑星や彗星、また遠くの中性子星やブラックホールなど、あらゆる天体からプラズマが放出されています。その結果、地球や惑星はプラズマを介して太陽とつながり、太陽もまた銀河の無数の星々から放出される星間プラズマの影響を受けているのです。

積極的な宇宙利用を進める人類にとって、地球や惑星を取り巻く宇宙環境を正しく理解することは喫緊の課題になっています。そのためには、無衝突衝撃波、ジェット、乱流など、宇宙プラズマの多様な高エネルギー現象の解明が必要です。本研究室では、理論、計算機実験、衛星データ解析、大型レーザー実験などの手法を用いて、宇宙で起こるさまざまな非平衡、非定常、非線形現象の解明、さらには制御したプラズマを用いた宇宙推進機の基礎研究に取り組んでいます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●無衝突衝撃波におけるエネルギー変換過程
●太陽風中の非線形波動の励起・伝播
●宇宙線の加速・輸送過程
●相対論的プラズマの数値シミュレーション
●実験室宇宙物理学、プラズマ生成・加速


[Ⅲ類] エネルギー流体科学研究室

機械・システム理工学メジャー


准教授 安養寺正之,  
研究室サイトへ

航空宇宙工学、特に実験空気力学と先進流体計測を専門として、航空機やロケット、自動車周りの流体解析・空力設計に関する研究に取り組んでいます.火星の地表観測・残留磁場観測を目的とした火星探査航空機の開発や画像解析技術を駆使した自動車周りの流体解析などが主な研究テーマです.

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


◼ 火星探査航空機の空力設計に関する研究
◼ 車体周りの流体解析に関する研究
◼ 遷音速・超音速噴流の流体現象と音響解析に関する研究
◼ 画像解析による非接触流体解析技術の開発


[Ⅱ類] プラズマ応用理工学研究室

プラズマ・量子理工学メジャー


教授 林信哉 , 助教 寺坂健一郎,  
研究室サイトへ

通常は私たちの身の回りにはない高エネルギー粒 子であるプラズマを用れば,これまで不可能であっ た技術が可能になります.「医療」「バイオ」「農 業」「環境」の各分野で役に立つプラズマの新しい 応用技術の研究開発を行っています.
プラズマは高いエネルギーを持ちますが寿命が短 いため,化学薬品とは異なり,薬剤の残留性の心配 がない安全無害な応用が可能です.この利点により 人と環境に優しい医療器材用プラズマ滅菌器や農産 物殺菌装置,食品殺菌装置を開発しています.また, 植物に酸素プラズマを照射することで植物の成長を 促進させる研究も行っています.
また,細胞に酸素プラズマを照射しがん細胞を殺 滅する研究を行っています.一方でT細胞,B細胞, マクロファージといった免疫細胞に酸素プラズマを 適度に照射することで免疫細胞を活性化し,病気の 予防につなげる研究も推進しています.

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●酸素プラズマによる人と環境に優しい滅菌器
●プラズマ照射によるがん細胞の殺滅とメカニズム
●酸素プラズマによる免疫細胞の活性化


[I類] 構造材料物性学研究室

材料理工学メジャー


教授 中島英治 , 准教授 光原昌寿 , 助教 片平賀子,  
研究室サイトへ

金属やセラミックスなどの結晶性材料の力学特性と微細構造について主に研究を行っている 。 原子配列 、 格子欠陥 転位など の密度や分布 、 結晶粒界の性質 、 結晶配向や析出物分散状態といった様々なサイズの内部組織に着目しつつ 、 材料の力学的性質などを決める諸因子を解明し 、 未来の材料開発に貢献することを目的としている 。 引張試験 ・ 圧縮試験 ・ 硬さ試験 ・クリープ試験などの力学試験 、 電子顕微鏡による組織観察を得意としている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●構造用金属材料の変形と破壊
●耐熱合金のクリープ変形と強化機構解明
●新規耐熱合金の開発


[I類] 先進ナノマテリアル科学研究室

材料理工学メジャー


教授 吾郷浩樹,  
研究室サイトへ

最近、原子の厚みしかない二次元の原子シート原子膜が、大きな注目を集めています。当研究室では、炭素からなる原子膜で、優れた電気特性を示す「グラフェン」、二次元絶縁膜である「六方晶窒化ホウ素 h-BN)」などを扱っています。特に、CVD法による高品質合成や物性発現、ヘテロ積層に関する研究を行っています。さらに、積層した原子膜の間にできる二次元空間を利用して、一般には存在しない結晶構造を見出す、あるいは全く新しい二次元物質を作り出すという試みを進めています。このような研究を通じて、トランジスタや太陽電池、光センサーなどの応用研究も展開しています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●グラフェンの成長と反応機構、及び応用展開
●新規原子膜である遷移金属カルコゲナイドや六方晶窒化ホウ素等の合成や物性・応用
●原子膜で囲まれた二次元ナノ空間に基づく新しい科学の推進


[I類] 熱・電子機能物性理工学研究室

材料理工学メジャー


教授 大瀧倫卓 , 准教授 末國晃一郎,  
研究室サイトへ

無機固体の機能物性学と、化学的な物質創製学との協奏的な融合を目指して、「新しく面白く(できれば美しく)、そして役に立つ」材料の開発を行っている。特に金属酸化物半導体や金属カルコゲナイド、低次元ナノ構造物質などの熱・電子・光・磁気物性について、熱エネルギーを電気エネルギーに変換する熱電変換材料や、熱の移動を可変制御できる材料、光や磁場に特異な応答をする材料、シングルnmオーダーの低次元規則性を自発的に持つ材料などの探索・合成・評価解析を進めている。なかでも、環境適合性や安全性、耐久性、経済性が注目されている酸化物・硫化鉱物熱電材料については、世界に先駆けて開発研究に着手し、現在もn型酸化物の熱電性能記録を更新し続けており、世界的にも先導的な研究拠点の一つである。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●結晶構造・組成・ナノ構造の革新による酸化物・硫化物熱電変換材料の開発
●ナノ粒子分散・ナノへテロ界面による増強フォノン散乱と良導電性の両立
●新規プロセッシングによる酸化物/非酸化物ナノコンポジットセラミックス
●多元素同時ドープによる特異な固溶限界拡大と高濃度ドーピング
●層状・かご状・ラトリング結晶構造と熱・電子物性解析
●有機分子集合体鋳型による低次元無機ナノ物質の自己組織合成と特異量子物性


[Ⅲ類] 建築環境工学研究室

機械・システム理工学メジャー


教授 伊藤一秀 , 特任准教授 劉城準 , 助教 久我一喜,  
研究室サイトへ

室内の空気・熱環境形成と生体反応は密接な関係があり、健康・ 快適で且つ生産性の高い室内環境を創造するためには、室内環 境要素と人体の相互関係の総合的予測・評価が必須となります。 本研究室では、室内環境解析用数値人体モデル(Computer Simulated Person)に着目し、室内環境質を総合的かつ高精度に 予測・評価することを目指しています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


◼ 呼吸器系を統合した数値人体モデルの開発に関する研究
◼ 生理的薬物動態(PBPK)解析による経気道暴露リスク評価
◼ 空気感染性汚染物質の飛散シミュレーション
◼ 数値人体モデル―人体熱モデルの連成解析と熱快適性評価
◼ 室内汚染物質の吸着・分解に関する数理モデルの開発


[Ⅱ類] 核融合プラズマ物性制御工学研究室

プラズマ・量子理工学メジャー


教授 井戸毅 , 助教 長谷川真,  
研究室サイトへ

無尽蔵の燃料と高い安全性のため究極のエネルギー源と期待される核融合発電炉を実現するためには、1億度を超える高温プラズマを効率よく生成し、閉じ込める必要があります。それには、高温プラズマの性質を理解することが必要不可欠です。また、高温プラズマは強い非線形性を有する非平衡開放系であり、その性質をどのように解明し、また制御するかは、現代物理学及び工学の最前線の課題でもあります。本研究グループは、球状トカマク装置QUESTを用い、高温プラズマの物理的性質を明らかにするための重イオンやレーザーを用いた計測器の開発とそれを用いた物理研究を展開し、かつその知見に基づいて定常核融合炉に適した制御法を開発するための研究を進めています。

当研究室は、核融合システム理工学(花田・恩地)研究室、先進プラズマ理工学(出射・池添)研究室と協力して教育・研究を進めています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●磁場閉じ込めプラズマ中の乱流及び不安定性の研究
●重イオンビームプローブによるプラズマ乱流計測
●レーザー散乱を利用した電子温度、密度計測器の高性能化
●球状トカマク装置のリアルタイム制御法の開発
●機械学習を用いた磁場閉じ込め高温プラズマの位置・形状のリアルタイム再構成
●定常運転におけるデータの時系列予測及びフィードバック制御
●遠隔実時間データ収集・データ処理・データ閲覧と遠隔実験


[I類] ナノ材料・デバイス科学研究室

材料理工学メジャー


准教授 斉藤光 , 助教 井原史朗,  
研究室サイトへ

電子顕微鏡内で試料に熱・光・外力などを加えて、微細組織や機能/力学特性がどのように変化するかをリアルタイムで観察する「その場観察」法は、「現象が自分の目で見える」という電子顕微鏡の特徴を最大限に活用できる手法です。本教育分野では、その場観察手法をさらに進化させ、AIに代表されるデータサイエンスを駆使した情報処理技術、さらには計算科学的手法と融合させることで、未知の物質の探索やデバイス機能そのものをナノスケールで可視化する新技術を開発し、材料やデバイスの研究開発革新を加速させることに挑戦しています。また、電子顕微鏡の本質である電子線と物質との相互作用の中にはいまだに未解明かつ魅力的な現象があります。本教育分野ではそれらの探求にも踏み込み、さらに活用した新原理の超高速検出器やイメージング手法の開拓を推進し、真に新しい科学現象を可視化するユニークな電子顕微鏡法を生み出そうとしています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●ポリマー・金属など構造材料のナノ力学を解明するその場変形ナノイメージング
●天然鉱物ナノ粒子およびナノ鉱物における不定比組成と構造変態の相関
●トポロジカル表面プラズモンと二次元半導体の軌道角運動量選択相互作用の観測
●新型ピコ秒電子線検出器の開発とナノ蛍光寿命イメージングへの応用
●機械学習を活用した電子エネルギー損失分光の高速化と有機材料解析への応用
●機械学習を活用した超高速電子線トモグラフィーによる3Dナノイメージング
●塑性変形に伴う転位下部組織形成過程の観測


[I類] 化学反応工学研究室

材料理工学メジャー


教授 林潤一郎 , 准教授 工藤真二 , 助教 浅野周作,  
研究室サイトへ

現代社会に欠かせないエネルギーや様々な化学品は化石資源を利用して作られている。いずれ化石資源が使えなくなることを想定し,かつ環境問題も考慮し,唯一の豊富な代替資源であるバイオマスを原料とする、あるいは他の代替可能な手段による多様な技術の開発をしておくことは人類にとって重要である。本研究室では、カーボンニュートラル・ネガティブ社会の実現に貢献するバイオマスなど炭素系資源および金属系資源の転換を含む化学プロセスの開発を目指して、化学工学、反応工学、触媒工学を基礎とする研究を行っている。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●バイオマスなど炭素資源ベースの分散型スマート・グリーン化学システムおよび反応・反応器・触媒開発
●CO2ニュートラル/ネガティブを実現する炭素資源からの電力・化学コプロダクションおよびクリーン製鉄
●マイクロリアクター・ロボティックリアクターシステム


[Ⅲ類] エネルギー熱物理科学研究室

機械・システム理工学メジャー


教授 渡邊裕章,  
研究室サイトへ

発電等のエネルギーシステムや航空機等の輸送推進システムの低炭素化は、人類の極めて重要な課題です。本研究室では、流体力学や熱化学等を基盤として、システムの基幹要素となる化学反応・燃焼の数値シミュレーションや実験と情報科学との融合研究を通じて、低炭素社会を実現する革新的な燃焼技術やエネルギー転換技術の開発に取り組んでいます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


◼ 高効率・ゼロエミッションガスタービンの研究
◼ 低NOx航空用ジェットエンジンの研究
◼ 固体燃料の高効率エネルギー転換技術の研究
◼ メタンハイドレートの回収利用技術の研究


[Ⅲ類] 生体エネルギー工学研究室

機械・システム理工学メジャー


准教授 東藤貢,  
研究室サイトへ

iPS細胞由来心筋細胞を用いたアクチュエータ開発や発電細胞を 模擬したバイオ電池の開発等のバイオテクノロジー研究、骨・軟 骨・血管等の再生医療への応用を目指した複合系多孔質材料の 構造と力学特性に関するバイオマテリアル研究、医療用CT画像を 用いたコンピュータ・シミュレーションによる骨・関節のバイオメカ ニクス研究を進めています.また、工学的技術の医学への応用を 目指し、医学系研究者と連携して学際的研究を推進しています.

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


◼ iPS細胞由来心筋細胞を用いたバイオアクチュエータの開発
◼ 発電細胞を模擬したバイオ電池の開発
◼ CT画像を利用したFEMを用いた骨のバイオメカニクス研究
◼ AIを利用した骨折診断システムの開発


[Ⅲ類] 都市環境科学研究室

機械・システム理工学メジャー


教授 萩島理 , 准教授 池谷直樹,  
研究室サイトへ

人口の過半が都市域に住む現在、都市の省エネルギーと環境負荷軽減は人類共通の目標です.一方、都市建築空間の環境の質は人々の健康安全と快適性に大きく影響します.本研究室は、伝熱学や流体力学などを基礎として、都市域の熱流体物理現象の素過程究明とサスティナブルな居住環境を目指す応用研究に取り組んでいます.

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


◼ Sustainableな建築・都市環境のための応用研究
◼ 都市気候学による輸送メカニズム解明
◼ 都市域建物の換気現象に関する研究


[I類] 結晶物性工学研究室

材料理工学メジャー


准教授 板倉 賢 , 助教 赤嶺大志,  
研究室サイトへ

材料の機能や特性は材料の微細組織と深く結びついています。そのため高機能な材料開発には、さまざまなニーズに応じた材料の微細組織設計が求められます。当研究室では、最先端の電子顕微鏡法や計算機シミュレーション等のさまざまな解析手法を用いて、材料機能・特性と微細組織の関わりを明らかにし、より高度な材料開発への指針を得る研究を行っています。特に、超強力磁石材料、機能性金属材料、半導体薄膜材料などの先端機能材料を中心に、ミリからナノまでの広範なマルチスケール電顕解析を行って、低炭素化社会の実現に貢献する研究に取り組んでいます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●マルチスケール電子顕微鏡観察による高性能ネオジム磁石の微細構造解析
●収差補正 STEM を用いた新規 PLD 積層膜磁石の微細構造解析
●最新走査電子顕微鏡法による磁性体・誘電体ドメイン構造解析
●チタン合金のオメガ相変態機構の解明


[I類] 先端機能材料研究室

材料理工学メジャー


教授 藤野茂,  
研究室サイトへ

本研究室では、 次世代のフォトニクス 、 エレクトロニクス 、 バイオ分野を支える先端機能性ガラスに関する研究を行っています 。 具体的には光通信や半導体分野にて用いられるシリカガラスを主眼とし 、 ナノガラス構造形成と新しい機能性発現のための材料プロセッシングに関する学問を構築すること目的とする 。 その成果を基に 、 従 来の製造 ・ 加工法では実現できなかった微細かつ複雑な形状を本研究室が開発した新規な3 D光造形技術 3 D プリンター を駆使した高機能性ガラス 光学レンズ 、 微細光学部品 、 光センサー 、 光メモリ 、 バイオチップ 、 フラクタル構造等 の実用化研究に取り組む 。 一例として下図に微細かつ複雑形状を有するガラスの例を示す 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●3 D 光造形技術を用いた新規機能性ガラス開発
●モノマー シリカ 光硬化反応機構の解明
●ナノコンポジット材料の透明焼結機構の解明


[Ⅱ類] 粒子線物理工学研究室

プラズマ・量子理工学メジャー


教授 渡辺幸信 , 准教授 金政浩 , 助教 川瀬頌一郎,  
研究室サイトへ

安全・安心・スマートな未来社会を支える粒 子線物理工学研究
中性子やミュオンといったミクロな粒子線のエ ネルギー・医療・宇宙開発分野への先端的応用を 目指し、物理学と医学・工学の分野融合研究を 行っています。加速器実験・理論計算に加えて数 値シミュレーションの手法を駆使し、がん等の検 査や治療に用いる新しい放射性薬剤製造法の開発、 半導体デバイスにおける宇宙線誘起ソフトエラー 発生機構の解明、高レベル放射性廃棄物の低毒化 や資源化のための核変換、宇宙線ミュオグラフィ による小中規模インフラ設備の透視による劣化診 断、機械学習を用いた放射線計測データの解析技 術開発といった研究テーマに取り組んでいます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●ミュオグラフィ技術による構造物透視
●宇宙線誘起ソフトエラー発生機構の研究
●加速器中性子源を用いた医療用RI製造
●核変換による高レベル放射性廃棄物の低毒化
●先端放射線検出器およびデータ解析手法の開発


[Ⅲ類] 熱エネルギー変換システム学

機械・システム理工学メジャー


教授 宮崎隆彦 , 准教授 Kyaw Thu,  
研究室サイトへ

地球温暖化を止めるには、化石燃料に頼る現在のエネルギーシステムを根本から見直す必要があります。本研究室は、あらゆるエネルギーの最終形態である「熱」に着目し、熱の有効活用によって地球環境問題の解決を目指します。特に、発電や高温の産業プロセス等で排出される排熱を利用した新技術の開発に取り組んでいます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


◼ 太陽の熱で動く吸着式ヒートポンプに関する研究
◼ バイオマス由来活性炭を利用した省エネルギー技術の研究
◼ 地球温暖化への影響の小さい冷媒を用いた空調システムの研究
◼ 電気自動車における熱の有効活用に関する研究
◼ 地熱や温泉水を活用した発電サイクルの高効率化に関する研究


[Ⅱ類] シミュレーションプラズマ物理学研究室

プラズマ・量子理工学メジャー


准教授 糟谷直宏,  
研究室サイトへ

核融合プラズマに関するシミュレーション研究 にスーパーコンピュータを用いて取り組む。磁場 閉じ込めプラズマで重要な役割を果たすプラズマ 乱流について、自発的構造形成機構を中心にシ ミュレーション研究を行う。また、プラズマ実験 とプラズマシミュレーションから得た乱流場デー タを対照させる数値診断により、プラズマ乱流を 研究する新しい方法論(乱流統合診断)を開拓する。 さらに、核融合プラズマの輸送問題について、炉 心、周辺等の支配法則を探求し、それら物理過程 を統合した核融合炉シミュレータを開発すること により、核燃焼プラズマの自己完結的な時間発展 シミュレーション実現をめざす。これら研究を通 じて、実験観測対象を模擬する複合的な計算機シ ミュレーションのための教育を行う。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●プラズマ乱流の構造形成と選択則に関する研究
●乱流場の数値診断シミュレーション研究
●核燃焼プラズマ統合コードの開発研究
●マルチスケールプラズマシミュレーション研究


[Ⅱ類] 光エレクトロニクス研究室

デバイス理工学メジャー


教授 浜本貴一 , 助教 姜海松,  
研究室サイトへ

日々の健康を気軽にモニタするための小型呼気センシン グ光集積回路 、 将来の IT 機器内高速配線用の超高速半導体レーザ 、 将来の光通信容量を飛躍的に増大させる光多重伝送用の光集積回路などを研究しています 。 AI 技術を取り入れた最先端の光導波路技術を開拓し 、 画期的な光デバイスを実現しようとしています 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●携帯健康診断を目指した光バイオセンシングデバイス “ 呼気 人間の息 センシング用光集積素子を研究して います 。 将来の健康診断装置等への適用を目指し 、 セ キュリティシステムや携帯端末などへ搭載可能な光セン シングシステムの研究を行っています 。
●超高速ネットワークを目指した次世代半導体レーザ 世界で初めて実証した アクティブ MMI 現象 を用い 、 世 界最高速比 100 1 000 倍以上の Tbps 級動作を目指した超高
速半導体レーザの研究を行っています 。 ●超大容量通信用空間モード多重デバイス 現在の 1000 倍以上の伝送容量増大を目指し 、 空間モード を人工的に交換することのできる光モードスイッチ 世 界初 を研究しています


[Ⅱ類] 先進宇宙ロケット工学研究室

プラズマ・量子理工学メジャー


教授 山本直嗣 , 助教 森田太智,  
研究室サイトへ

手のひらサイズの小型人工衛星用ロケットから 有人惑星間航行用のレーザー核融合ロケットエン ジンまで様々な次世代宇宙推進に関する研究およ び開発を、実験、計算機シミュレーションの両面 から進めています。さらに宇宙機のシステム設計 も行っています。
また、天体観測や衛星観測だけでは理解が難し い超新星残骸における衝撃波、太陽フレアにおけ る磁力線再結合、地球のバウ衝撃波等の高エネル ギー現象に似た状態を地上で再現し、詳細に計測 することで、宇宙の高エネルギープラズマ現象の 研究も進めています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●手のひらサイズの小型イオンエンジンの開発
●ホールスラスタにおける異常輸送の解明
●電気推進機の自動制御に関する研究
●レーザー核融合ロケットの原理実証研究
●高強度レーザーによる天体プラズマ現象の研究


[Ⅱ類] 電子システム工学研究室

デバイス理工学メジャー


教授 服部励治,  
研究室サイトへ

この研究室では新規の電子ディスプレイを中心 に研究・開発しています。現在、取り組んでいる のは「有機ELディスプレイ」と「マイクロLED ディスプレイ」。この他にも周辺技術となる薄膜 トランジスタ、無線電力伝送、タッチパネルにも 研究範囲を広げています。ディスプレイ技術は毎 年毎年目まぐるしく変化していっていますが、 我々も変化を恐れず新しい技術に積極的に取り組 んで行きます。また、大面積でフレキシブルな ディスプレイを作る時に重要な技術となる有機エ レクトロニクスの研究も行っています。この研究 室では材料からアプリケーションまで幅広い知識 と経験を得ることが可能です。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●フレキシブル透明有機ELディスプレイの研究
●マイクロLEDディスプレイの研究
●容量結合型心電センサーの研究
●無線電力伝送技術の開発


[I類] 機能有機化学研究室

化学・物質理工学メジャー


教授 國信洋一郎 , 准教授 森俊文 , 助教 鳥越尊 , 助教 関根康平,  
研究室サイトへ

水素結合やLewis酸-塩基相互作用のような非共有結合性相互作用を1つのキーワードとして、高い活性と選択性を発現できる触媒を創製し、炭素-水素(C-H)結合変換反応など、高効率かつ実用的な新規有機合成反応を開発しています。また、開発した反応を利用することで、π共役系分子やポリマーなどの高性能な有機機能性材料の創製を目的に、研究を行なっています。さらに、理論化学に基づく計算機シミュレーションによって、溶液内で起こる化学反応やポリマー形成過程の分子機構、高分子の高次構造を解明し、その知見を活用した分子・触媒のデサインを目指す研究を展開しています。これらの研究を通して、エネルギーや環境問題の解決を目指しています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●高い活性や機能性をもつ触媒の創製
●新規かつ実用的な有機合成反応の開発:炭素-水素結合変換反応の開発、など
●高性能な有機機能性分子の創製:新規π共役系分子やポリマーの創製
●凝縮系反応への理論化学の展開


[I類] 量子材料物性学研究室

材料理工学メジャー


教授 波多聰

電子線トモグラフィー、 歳差運動照射電子回折 、 自動 ・ 高速画像収録など 、 先端電子顕微鏡設備の観察 ・ 分析機能を活用し 、 材料物性に関わる諸問題の解明に取り組んでいる 。 最近は特に 、 学内外の研究者 ・ 技術者と共同で 、様々な画像処理や機械学習の技術を電子顕微鏡データの収録 ・ 解析に取り入れるほか 、 新機能を有する試料ホルダーの開発を行うなど 、ソフトとハードの両面から電子顕微鏡法の発展に力を入れている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●その場変形電子線トモグラフィーの手法開発および転位 結晶欠陥 の三次元ダイナミクス観察への応用
●電子線ナノビーム回折 ・ 分光データの多点収録による鉄鋼材料 、 超伝導材料 、 ガラス材料等の微細構造解析
●結晶化合物の短範囲規則状態 ナノ領域構造ゆらぎ における三次元局所構造解析


[Ⅱ類] 非平衡プラズマ理工学研究室

プラズマ・量子理工学メジャー


教授 稲垣滋,  
研究室サイトへ

プラズマには熱流や物質流があり空間的に非均一で時 間的に大きく変動する典型的な非平衡系で宇宙プラズ マ 、 核融合プラズマはこのような非平衡プラズマです 。 非平衡プラズマに現れる突発的現象 、 遠隔結合現象や自 己組織化現象のような複数の相互作用とフィードバック のある系の物理を実験室プラズマを用いて解き明かし ます 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●ダイナモ磁場 , ゾーナル流の自発形成 機構解明
●乱流と輸送の非線形相互作用による プラズマの自己組織化機構の解明
●レーザーやマイクロ波による先進的 プラズマリモートセンシングの開発
●トモグラフィーによる乱流の多次元構 造のダイナミクスの観測
●データ駆動プラズマ科学


[Ⅱ類] 先進プラズマ理工学研究室

プラズマ・量子理工学メジャー


教授 出射浩 , 准教授 池添竜也,  
研究室サイトへ

宇宙で輝く恒星の内部では核融合反応が起きています。将来の究極のエネルギー源として期待される「地上の太陽」の実現に向けて、世界各国が協力して核融合炉の研究開発を進めています。
筑紫キャンパスにアジア最大の球状トカマク装置QUESTを構え、RFを用いた核融合プラズマの生成・加熱・維持、プラズマ診断・制御の研究、および必要な高周波・ミリ波要素部品の開発等に取り組んでいます。ITER、核融合(原型)炉で用いられるような大電力ミリ波要素部品の開発は、国内外の大学・研究所との共同研究で進めています。また、多彩な複雑性を秘める高温プラズマの普遍的な性質を探求する物理研究も行っています。関連する実験技術と解析、数値計算、物理議論を習得するための総合的な教育を行います。
当研究室は、核融合システム理工学(花田・恩地)研究室、核融合プラズマ物性制御工学(井戸・長谷川)研究室と協力して教育・研究を進めています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●トカマクプラズマの非誘導立ち上げシナリオの構築
●プラズマ波動を用いた先進プラズマ加熱、電流駆動、制御手法の開発
●電磁波を用いた高温プラズマ計測技術の開発
●大電力ミリ波要素部品の開発
●磁化プラズマの巨視的・微視的不安定性の学理
●高速電子とホイッスラー波の相互作用に関する地上実験


研究室・教員一覧 

九州大学 工学部 融合基礎工学科

“工学系分野の融合”ד情報科学”を基軸とし、広い視野と実践的な行動力をもったAI時代のリーダーを創出


キャンパスアジア EEST

エネルギー環境理工学グローバル人材育成のための大学院協働教育プログラム


EVERGREEN

Joint Journal of Novel Carbon Resource Sciences and Green Asia Strategy


IEICES

Annual International Exchange and Innovation Conference on Engineering & Sciences