scroll


研究室・教員・研究テーマの検索

ホーム > 学府について > 研究室・教員・研究テーマの検索

検索キーワード:I類 

36 研究室が該当しました。

ブックマークリストからオンライン面談や研究室訪問の申し込みが出来ます。

[I類] 量子化学研究室

化学・物質理工学メジャー


教授 青木百合子,  
研究室サイトへ

分子軌道法に基づく量子化学的手法により原子・分子レ ベルで解明する計算方法を開発するとともに、新機能材料設計や触媒反応解析を行っている。特に、独自開発しているオーダー(N)高精度計算法によるミクロな視点でのナノチューブやグラフェン、生体高分子の構造機能解明を行い、スパコンによる分子設計を目指している。そこでは独自の軌道間相互作用解析法により、物性や反応の原理解明にも取り組んでいる。一方、磁性、導電性、非線形光学特性、電池特性等の合成前設計に資する手法の構築とともに、ニューラルネットワークを用いた機械学習やダイナミクスも導入し、マルチスケール計算法も展開している。


●オーダー(N)高精度計算法-Elongation法-の開発とデータサイエンス
●固体表面の構造・特性解析、均一系・不均一系・生体-触媒反応解析
●強磁性・導電性・非線形光学・電池材料等の理論解析と設計
●機能解明のための軌道相互作用評価-Through Space/Bond解析法-の開発と応用
●環境問題に資するCO2吸着問題、高分子劣化防止に関する計算化学


[I類] 機能分子工学研究室

化学・物質理工学メジャー


教授 菊池裕嗣 , 准教授 奥村泰志 , 助教 阿南静佳,  
研究室サイトへ

新規な分子設計に基づいた液晶、 キラル化合物 、 高分子 、 金属有機構造体などを組み合わせて自己組織的に形成される複合系を設計し 、 偏光顕微鏡 、 共焦点顕微鏡 、 電子顕微鏡や超解像顕微鏡などを駆使した構造観察およびDSC 、 誘電緩和 、 電気光学応答 、 第二次高調波発生 など各種物性測定による知見に基づいて構造や秩序を高度に制御すると共にデバイス化することで 、 低環境負荷で高性能な新材料の創製と様々な分野への応用を目指している 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


● ナノ構造化ソフトマターの構造観察、秩序形成 メカニズムの解明と新規構造様式の創出
● 物質融合による新規液晶相の創製と電気光学・ 電気化学デバイスへの応用
● 比誘電率が約1万の強誘電性液晶材料の機構 解明と多様な分野への応用


[I類] 機能材料物性学研究室

材料理工学メジャー


教授 島ノ江憲剛 , 准教授 渡邉賢 , 助教 末松昂一,  
研究室サイトへ

金属酸化物を中心した無機材料の精密合成や構造制御を原子・ナノレベルで行うことにより、バルク、表面,界面の機能を最大限に引き出すとともに新たな機能も付加した、最先端のガスセンサ、次世代の全固体電池、超高性能酸素分離膜など、これまでにない新しい化学機能デバイスを創製する。これらの研究開発では、材料・デバイスの構造・物性の高度な解析により機能発現メカニズムを理解するとともに、先進デバイスの実現に資する設計指針を構築し、産業展開する。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●精密ナノ粒子創成技術の開発と酸化化物半導体、固体電解質を用いた高機能ガスセンサへの応用研究
●セラミックス焼結技術を応用した次世代全固体電池作製プロセスの開発と材料設計の構築
●新規酸化物イオン導電体、混合導電体を用いた高性能酸素分離膜に関する研究


[I類] 分子科学研究室

化学・物質理工学メジャー


教授 古屋謙治,  
研究室サイトへ

プラズマ中にμmサイズの微粒子を注入する と負に帯電してプラズマ中に閉じ込められ、そ れらの集団はプラズマ中に浮遊したまま結晶 化あるいは流動化を起こす。これら微粒子の集 団としての振舞いや個々の微粒子の運動は容 易に可視化でき、強相関系や自己組織化、非線 形現象のモデル系として興味深い。当研究室 では、このようなプラズマ中でのクーロン結晶 /クーロン液体に関する物理を研究するととも に、材料科学への応用を目指している。


●クーロン結晶/クーロン液体観測装置の改良と観測実験
●分子動力学計算によるクーロン結晶/クーロン液体のシミュレーション
●クーロン結晶を利用した材料開発


[I類] 熱・電子機能物性理工学研究室

材料理工学メジャー


教授 大瀧倫卓 , 准教授 末國晃一郎,  
研究室サイトへ

無機固体の機能物性学と、化学的な物質創製学との協奏的な融合を目指して、「新しく面白く(できれば美しく)、そして役に立つ」材料の開発を行っている。特に金属酸化物半導体や金属カルコゲナイド、低次元ナノ構造物質などの熱・電子・光・磁気物性について、熱エネルギーを電気エネルギーに変換する熱電変換材料や、熱の移動を可変制御できる材料、光や磁場に特異な応答をする材料、シングルnmオーダーの低次元規則性を自発的に持つ材料などの探索・合成・評価解析を進めている。なかでも、環境適合性や安全性、耐久性、経済性が注目されている酸化物・硫化鉱物熱電材料については、世界に先駆けて開発研究に着手し、現在もn型酸化物の熱電性能記録を更新し続けており、世界的にも先導的な研究拠点の一つである。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●結晶構造・組成・ナノ構造の革新による酸化物・硫化物熱電変換材料の開発
●ナノ粒子分散・ナノへテロ界面による増強フォノン散乱と良導電性の両立
●新規プロセッシングによる酸化物/非酸化物ナノコンポジットセラミックス
●多元素同時ドープによる特異な固溶限界拡大と高濃度ドーピング
●層状・かご状・ラトリング結晶構造と熱・電子物性解析
●有機分子集合体鋳型による低次元無機ナノ物質の自己組織合成と特異量子物性


[I類] 先進ナノマテリアル科学研究室

材料理工学メジャー


教授 吾郷浩樹,  
研究室サイトへ

最近、原子の厚みしかない二次元の原子シート原子膜が、大きな注目を集めています。当研究室では、炭素からなる原子膜で、優れた電気特性を示す「グラフェン」、二次元絶縁膜である「六方晶窒化ホウ素 h-BN)」などを扱っています。特に、CVD法による高品質合成や物性発現、ヘテロ積層に関する研究を行っています。さらに、積層した原子膜の間にできる二次元空間を利用して、一般には存在しない結晶構造を見出す、あるいは全く新しい二次元物質を作り出すという試みを進めています。このような研究を通じて、トランジスタや太陽電池、光センサーなどの応用研究も展開しています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●グラフェンの成長と反応機構、及び応用展開
●新規原子膜である遷移金属カルコゲナイドや六方晶窒化ホウ素等の合成や物性・応用
●原子膜で囲まれた二次元ナノ空間に基づく新しい科学の推進


[I類] 構造セラミックス材料学研究室

材料理工学メジャー


教授 Jang Byung Koog (張 炳國),  
研究室サイトへ

本研究室では、エネルギー・環境材料として、セラミックス材料を中心に、微細組織およびプロセス制御による高温構造用セラミックス材料及び高特性・新機能を持つ複合材料の創製や物性評価に関する研究に取り組んでいる。
具体的には、構造セラミックス、耐熱セラミックス、 EB-PVDやプラズマ溶射法による航空機及び発電プラント向けガスタービン用耐熱・耐食セラミックスコーティング、透光性セラミックス、熱電材料、複合材料の創製とその材料の熱特性、耐食性、導電性、光学特性、機械的物性の評価に関する研究を行っている。


●ガスタービン用耐熱 ・ 耐食セラミックスコーティングの開発
●透明性酸化物セラミックスの開発
●熱電材料の開発と熱電特性の評価
●カーボンナノチューブ (CNTs)やグラフェン強化ナノ複合材料の創製


[I類] 計算材料科学研究室

材料理工学メジャー




[I類] プロセス設計工学研究室

材料理工学メジャー


教授 寒川義裕 , 助教 草場彰,  
研究室サイトへ

近未来の新たな生活様式、産業活動スタイル(Society 5.0)への移行が推し進められている折から、我々人類は新型感染症の発生・拡大を経験し、その取組みの社会的意義が益々高まっている。材料開発においても AIを活用した「マテリアル革新力強化」の在り方が問われている。本研究グループでは計算科学とデータ科学に立脚した『材料プロセス・インフォマティクス』と言う学問領域を確立し、これからの時代に即した新たな材料開発・産業活動スタイルを提案する。現在、2014年ノーベル物理学賞の受賞対象材料となった窒化物半導体の更なる高品質化、次世代パワーデバイス等への応用を推し進めている。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●マルチフィジクス結晶成長シミュレーション ●GaN パワーデバイス開発 ●AlGaN 深紫外レーザー開発


[I類] 材料構造制御学研究室

材料理工学メジャー


教授 飯久保智,  
研究室サイトへ

構造・機能性材料の開発には用途に応じてさまざまな性質が求められるため、計算科学を利用して効率よく開発を進めることが成否をわけると言っても過言ではありません。私たちは物質内部の電子状態を明らかにする「第一原理計算」、物質の地図とよばれる「状態図」などを駆使して、新物質探索法や材料組織制御法を研究しています。具体的には太陽電池、熱電材料、二次電池などに適用し、物性物理学と材料組織学の観点から、次世代の構造・機能性材料の開発を行っています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●第一原理計算、計算状態図を利用した新物質探索法の開発
●熱力学データを活用した材料組織の制御法の開発
●量子ビーム(X線、中性子線)を用いた結晶構造解析


[I類] 生命有機化学研究室

化学・物質理工学メジャー


教授 新藤充 , 准教授 狩野有宏 , 助教 田中淳二 , 助教 岩田隆幸,  
研究室サイトへ

新藤・岩田:有用な有機分子の開発に向けて、高エネルギー反応剤であるイノラートを核に新規合成反応の開拓を行っています。さらに生命現象の理解と自在制御を目指して、これら精密有機合成化学を駆使した生体作用分子の設計、合成、評価を行っています。また、イノラートによる新奇なトリプチセンの合成を起点に機能性分子の創出を行っています。キーワード:有機合成・生物有機化学・反応開発・全合成・生体作用分子・機能性分子・天然物・抗がん剤・アレロパシー・重力屈性・分子プローブ
狩野:癌(がん)細胞は、本来必要な細胞に遺伝子変異が蓄積し暴走したものです。一方免疫システムは、がん細胞の出現を監視し排除していることがわかってきました。ここでは、がん細胞の異所性生着・増殖能獲得メカニズムや、特にマクロファージに注目したがん免疫の解明に取り組んでいます。また、得られた成果を元に新たな概念のがん治療法の開発を目指しています。


●イノラートを用いた新規有機合成反応の開発(新藤・岩田)
●新規触媒反応の開発と有機合成(新藤・岩田)
●生体作用分子の設計・合成と医薬・農薬への応用(新藤・岩田)
●生体解析用分子ツールの開発(新藤・岩田)
●複合トリプチセンの合成と分子機能(新藤・岩田)
●腫瘍浸潤免疫抑制性細胞の解析とその誘導機構の解明(狩野)
●免疫細胞を標的とした新たながん治療戦略の開発(狩野)


[I類] 分子・反応設計化学研究室

化学・物質理工学メジャー


教授 友岡克彦 , 助教 井川和宣,  
研究室サイトへ

「分子を作る方法 」 を開発し、またそれを応用してこれまで世界に存在しなかった 「 新しくて魅力的な有機分子」 を生み出すことは有機化学・有機合成化学の最も基本的かつ重要な研究命題の一つである 。 これに対して我々は、多様な官能基を持つ分子を効率的に合成するための酸化反応や求核置換反応、分子と分子を連結させる新型クリック反応などを開発するとともにその応用研究を行っている。また、 キラルケイ素分子や動的面不斉分子などの新しいキラル分子を設計 ・ 合成して、それらの特性を明らかにするとともに新しい機能性材料や生物活性分子として応用することを検討してる 。


●有機化学・有機合成化学・構造有機化学の基礎・応用研究
●効率的な有機分子合成法の開発と応用
●新型クリック反応の開発と応用
●新しいキラル分子化学の開拓


[I類] 高分子材料物性学研究室

化学・物質理工学メジャー


教授 横山士吉 , 准教授 高橋良彰 , 助教 高田晃彦 , 助教 山本和広,  
研究室サイトへ

情報通信分野への応用を目指した光学ポリ マーの材料研究とデバイス研究を進め 、 超高速 で低消費電力の光制御技術を実現する 。 また 、 無機 ・ 半導体光導波路とポリマーを融合したハ イブリッド型フォトニックデバイスや非線形光学 効果を用いた新規光スイッチングデバイスへの 展開を目指す 横山グループ 。 また 、 高分子の 物性研究として 、 様々な高分子類の構造と物 性の研究の研究を行う 高橋グループ 。


●ポリマー光変調デバイスの高性能化 横山グ ループ
●光機能性ポリマーの合成とデバイス応用 横山 グループ
●非線形光学素子による新しい光スイッチングデ バイス 横山グループ
●モデル高分子の絡み合いと粘弾性 高橋グルー プ


[I類] 構造材料物性学研究室

材料理工学メジャー


教授 中島英治 , 准教授 光原昌寿 , 助教 片平賀子,  
研究室サイトへ

金属やセラミックスなどの結晶性材料の力学特性と微細構造について主に研究を行っている 。 原子配列 、 格子欠陥 転位など の密度や分布 、 結晶粒界の性質 、 結晶配向や析出物分散状態といった様々なサイズの内部組織に着目しつつ 、 材料の力学的性質などを決める諸因子を解明し 、 未来の材料開発に貢献することを目的としている 。 引張試験 ・ 圧縮試験 ・ 硬さ試験 ・クリープ試験などの力学試験 、 電子顕微鏡による組織観察を得意としている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●構造用金属材料の変形と破壊
●耐熱合金のクリープ変形と強化機構解明
●新規耐熱合金の開発


[I類] 機能無機材料工学研究室

材料理工学メジャー


教授 永長久寛 , 准教授 北條 元,  
研究室サイトへ

触媒はエネルギー・ 物質変換と環境保全のためのキーマテリアルである 。 当研究室では金属のナノ粒子や複合酸化物などの無機系固体触媒材料の設計 ・ 開発から電子顕微鏡 、 シンクロトロン放射光を利用した触媒の静的 ・ 動的キャラクタリゼーション手法の開発を目指している 。 固体表面上の化学反応をつかさどる原理を解明する基礎研究から産業界との連携による実用化研究まで 、 一貫した触媒化学の教育研究を行っている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●高い触媒特性を示す金属担持触媒 、 金属酸化物触媒の開発
●無機固体材料の構造 ・ 機能解析および触媒特性との相関性の解明
●電子顕微鏡 、 シンクロトロン放射光を利用した新規な触媒構造 ・ 反応解析法の開発


[I類] 表面物質学研究室

材料理工学メジャー


准教授 中川剛志,  
研究室サイトへ

デバイスの微細化が進み固体表面の制御が重要となっているが 、 物質の表面は内部と異なった構造 ・ 物性を示すことが多い 。 本研究室では 、 固体表面の構造を原子レベルで解き明かし 、 電子状態や磁性などの物性評価へと展開することを目標としている 。 このため 、 低速 電子回折 LEED 、 走査トンネル顕微鏡STM 、 電界イオン顕微鏡 FIM などの原子レベルの表面構造解析に適した装置を用いて研究を行っている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●半導体、金属表面上の単原子層作製と構造・物性
●タングステンなどの針先端の原子レベル先鋭化と表面微小領域の構造解析法の開発
●磁性超薄膜での高保磁力や磁気相転移の研究


[I類] 先端機能材料研究室

材料理工学メジャー


教授 藤野茂,  
研究室サイトへ

本研究室では、 次世代のフォトニクス 、 エレクトロニクス 、 バイオ分野を支える先端機能性ガラスに関する研究を行っています 。 具体的には光通信や半導体分野にて用いられるシリカガラスを主眼とし 、 ナノガラス構造形成と新しい機能性発現のための材料プロセッシングに関する学問を構築すること目的とする 。 その成果を基に 、 従 来の製造 ・ 加工法では実現できなかった微細かつ複雑な形状を本研究室が開発した新規な3 D光造形技術 3 D プリンター を駆使した高機能性ガラス 光学レンズ 、 微細光学部品 、 光センサー 、 光メモリ 、 バイオチップ 、 フラクタル構造等 の実用化研究に取り組む 。 一例として下図に微細かつ複雑形状を有するガラスの例を示す 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●3 D 光造形技術を用いた新規機能性ガラス開発
●モノマー シリカ 光硬化反応機構の解明
●ナノコンポジット材料の透明焼結機構の解明


[I類] 無機ナノ構造解析学研究室

材料理工学メジャー


准教授 稲田幹,  
研究室サイトへ

セラミックス材料の高機能化のために、出発となる粒子の作り込みは重要な要素の一つである。当研究室では、溶液化学に基づいた液相合成により結晶内の原子の配列から粒子形態に至るまでの高次構造を制御し、 吸着・光分解特性、誘電特性、生体親和性などの機能向上を目指している。結晶および表面の構造、ナノからマクロまでの細孔構造、構成元素の配位状態などを総合的に解析し、構造と機能の関係を合成プロセスの観点から構築し、安心で安全な社会に資する高機能セラミックス材料開発に取り組んでいる。


●気水中の有害有機物に対する吸着・光分解環境浄化材料の開発
●液相中での粒子ブリッジによる階層的多孔構造体の開発
●アニオン包接結晶の形態制御と生体材料への応用


[I類] 量子材料物性学研究室

材料理工学メジャー


教授 波多聰

電子線トモグラフィー、 歳差運動照射電子回折 、 自動 ・ 高速画像収録など 、 先端電子顕微鏡設備の観察 ・ 分析機能を活用し 、 材料物性に関わる諸問題の解明に取り組んでいる 。 最近は特に 、 学内外の研究者 ・ 技術者と共同で 、様々な画像処理や機械学習の技術を電子顕微鏡データの収録 ・ 解析に取り入れるほか 、 新機能を有する試料ホルダーの開発を行うなど 、ソフトとハードの両面から電子顕微鏡法の発展に力を入れている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●その場変形電子線トモグラフィーの手法開発および転位 結晶欠陥 の三次元ダイナミクス観察への応用
●電子線ナノビーム回折 ・ 分光データの多点収録による鉄鋼材料 、 超伝導材料 、 ガラス材料等の微細構造解析
●結晶化合物の短範囲規則状態 ナノ領域構造ゆらぎ における三次元局所構造解析


[I類] 素子材料科学研究室

化学・物質理工学メジャー


教授 Yoon Seong Ho (尹 聖昊) , 准教授 宮脇仁 , 助教 中林康治,  
研究室サイトへ

炭素材料における階層的ナノ構造の認識と 機能性発現機構の理解に基づいた材料設計 ・ 複合化による高機能性創製 、 石油 ・ 石炭等化石 資源およびバイオマスの高度利用 、 および炭素 繊維や活性炭などの高機能性 ・ 高性能炭素材 料の電気自動車用構造材 、 吸着材や触媒担体 、 二次電池 ・ 黒鉛電極用電極材など 、 エネル ギー ・ 環境分野への応用を目指すグリーンサス テイナブルケミストリー研究を行っている 。


●高機能性・高性能炭素材料
●化石資源の高度利用
●グリーンサステイナブルケミストリー


[I類] 極限材料工学研究室

材料理工学メジャー


准教授 橋爪健一,  
研究室サイトへ

原子力・ 核融合 ・ 水素 ・ 放射線 ・ 太陽光等のエネルギー利用を念頭に 極限環境中 高温 ・ 高腐食 ・ 高放射線環境下など の物質 ・ 材料の研究を行っている 。 特に 、 物質 ・ 材料中の水素同位体 軽水素 、 重水素 、 三重水素 トリチウムの振舞い 溶解 、 拡散 、 透過など を明らかにすることを主要テーマとしている 。 水素は最も基本的な元素の一つであるが 、 その構造の単純さ 、 宇宙空間にも 、 地球上にも多量に存在する量的な豊富さ 、 また 、 エネルギー関連の物質 ・材料中で様々な振舞いをすることから 、 興味の尽きない元素である 。 本研究室では 、 このような水素の物質 ・ 材料中挙動とエネルギー材料開 発のための基礎学理をもとに教育を行っている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●原子炉材料 、 核融合炉材料 、 水素エネルギー材料の研究開発
●金属 、 セラミックス材料中の水素同位体の挙動研究
●放射線エネルギー利用研究


[I類] 材料電気化学研究室

化学・物質理工学メジャー


教授 岡田重人 , 准教授 アルブレヒト建 , 助教 猪石篤,  
研究室サイトへ

電気化学 ・ 有機化学 ・ 無機化学 ・ 光化学などを 基盤とした新規半導体 ・ エネルギー材料の開発 と 「 電界 」 を触媒とする新規反応の開拓を行っ ている 。 発光材料はデンドリマーと呼ばれる樹 状高分子を用いた有機 EL 用材料や刺激応答性 材料を開発している 。 二次電池材料について は電気自動車などに用いる低コスト低環境負 荷の大型高エネルギー密度蓄電池実現に向け て 、 次世代電池応用を見据えた有機系電極材 料や全固体電池応用を目指した固体電解質の 研究を行っている 。新規触媒反応としては有機 分子に電気二重層やナノギャップ電極を用い て強電界を印加した状態で行う反応の開拓を 行っている 。


● 刺激応答性等を有する発光材料の開発と発光 素子材料への展開
● 有機分子への電界印加を触媒とする有機合成 における新しい方法論の開発
● 全固体リチウムイオン電池の開発


[I類] ナノマテリアル国際ラボ(先導研)

材料理工学メジャー


教授 柳田剛 , 教授 村山光宏 , 教授 Ho Johnny Chung Yin,  
研究室サイトへ

ナノスケールで設計された”ナノマテリアル”はバルク材料では得ることができない極めて魅力的な構造・物性を有します。ナノマテリアル国際ラボでは、ナノ材料創成と解析に特化した3つのグループが共同で、原子・分子レベルから構造設計することで、既存の微細加工技術では決して真似することのできない高次酸化物ナノ構造体を低環境負荷プロセスにより創り出し、産業応用におけるグリーンイノベーション・ライフイノベーションを生み出す新デバイス群の提案・実証へ繋げる、研究を行っています。


1)無機酸化物を中心とした一次元・二次元・三次元ナノ材料の創成
2)計算科学によるナノ材料の設計支援、ナノ材料合成反応、材料機能を支配する化学反応機構解明
3)ナノ材料の階層的集積化、デバイス化およびセンサ等への応用
4)先端電子顕微鏡法を中心としたナノ材料解析と三次元&リアルタイム次世代ナノ構造・機能解析システムの開発


[I類] 機能材料構造学研究室

材料理工学メジャー




[I類] 機能有機化学研究室

化学・物質理工学メジャー


教授 國信洋一郎 , 准教授 森俊文 , 助教 鳥越尊 , 助教 関根康平,  
研究室サイトへ

水素結合やLewis酸-塩基相互作用のような非共有結合性相互作用を1つのキーワードとして、高い活性と選択性を発現できる触媒を創製し、炭素-水素(C-H)結合変換反応など、高効率かつ実用的な新規有機合成反応を開発しています。また、開発した反応を利用することで、π共役系分子やポリマーなどの高性能な有機機能性材料の創製を目的に、研究を行なっています。さらに、理論化学に基づく計算機シミュレーションによって、溶液内で起こる化学反応やポリマー形成過程の分子機構、高分子の高次構造を解明し、その知見を活用した分子・触媒のデサインを目指す研究を展開しています。これらの研究を通して、エネルギーや環境問題の解決を目指しています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●高い活性や機能性をもつ触媒の創製
●新規かつ実用的な有機合成反応の開発:炭素-水素結合変換反応の開発、など
●高性能な有機機能性分子の創製:新規π共役系分子やポリマーの創製
●凝縮系反応への理論化学の展開


[I類] 高分子機能材料学研究室

化学・物質理工学メジャー


准教授 Andrew Mark Spring,  
研究室サイトへ

高次制御されたリビング重合により 、 様々 な先端技術への利用に適したバルクポリマー の機能を精密に制御することが可能になる 。 中でも開環メタセシス重合 ROMP は用途 が広く 、 また興味深い重合技術の一つであり 、 大きな環ひずみを有する環状アルケンがモノ マーとして使用される 。 当研究室では主にグ ラブス触媒を用いた開環メタセシス重合によ る分子量のそろった様々なポリマー ホモ重 合体 、 ランダム重合体 、 ブロック共重合体 及 びその他の複雑な高分子化合物の合成と 、 そ の応用に関する研究をおこなっている 。


●電気光学( EO )ポリマーの開発
●新規共役系ポリマーの合成と有機エレクトロニ クス材料への展開
●水処理技術への利用を指向した機能性ポリマー の研究


[I類] ナノ材料・デバイス科学研究室

材料理工学メジャー


准教授 斉藤光 , 助教 井原史朗,  
研究室サイトへ

電子顕微鏡内で試料に熱・光・外力などを加えて、微細組織や機能/力学特性がどのように変化するかをリアルタイムで観察する「その場観察」法は、「現象が自分の目で見える」という電子顕微鏡の特徴を最大限に活用できる手法です。本教育分野では、その場観察手法をさらに進化させ、AIに代表されるデータサイエンスを駆使した情報処理技術、さらには計算科学的手法と融合させることで、未知の物質の探索やデバイス機能そのものをナノスケールで可視化する新技術を開発し、材料やデバイスの研究開発革新を加速させることに挑戦しています。また、電子顕微鏡の本質である電子線と物質との相互作用の中にはいまだに未解明かつ魅力的な現象があります。本教育分野ではそれらの探求にも踏み込み、さらに活用した新原理の超高速検出器やイメージング手法の開拓を推進し、真に新しい科学現象を可視化するユニークな電子顕微鏡法を生み出そうとしています。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●ポリマー・金属など構造材料のナノ力学を解明するその場変形ナノイメージング
●天然鉱物ナノ粒子およびナノ鉱物における不定比組成と構造変態の相関
●トポロジカル表面プラズモンと二次元半導体の軌道角運動量選択相互作用の観測
●新型ピコ秒電子線検出器の開発とナノ蛍光寿命イメージングへの応用
●機械学習を活用した電子エネルギー損失分光の高速化と有機材料解析への応用
●機械学習を活用した超高速電子線トモグラフィーによる3Dナノイメージング
●塑性変形に伴う転位下部組織形成過程の観測


[I類] プラズマ材料学研究室

材料理工学メジャー


准教授 德永和俊,  
研究室サイトへ

将来の基幹的なエネルギー源として開発が進められている磁場閉じ込め型核融合炉の炉材料に関する研究を行う 。 特に 、 核融合プラズマと対向材料の相互作用による表面損傷と不純物放出挙動 、 水素同位体吸蔵 ・ リサイクリングの基礎過程 、 及びプラズマからの高熱負荷による対向材料の損傷について解明する 。 これらと共に 、 プラズマ対向材料の候補材料であるタングステン (W の基礎的な力学特性評価やこれに及ぼす粒子照射効果についても研究を行う 。 さらに 、 これらの基礎データを基に核融合炉第一壁材料 、 及び核融合炉において熱 ・ 粒子 制御を行うダイバータの表面材料や高熱流束機器の開発への応用に関する研究も行う 。


●水素同位体 ・ ヘリウムプラズマ照射によるタングステンの表面損傷
●非定常高熱負荷によるタングステン 、 及びタングステン合金の損傷と材料開発
●タングステンの力学的特性評価と熱 ・ 粒子 水素同位体 ・ ヘリウム ・ 中性子 負荷効果


[I類] 結晶物性工学研究室

材料理工学メジャー


准教授 板倉 賢 , 助教 赤嶺大志,  
研究室サイトへ

材料の機能や特性は材料の微細組織と深く結びついています。そのため高機能な材料開発には、さまざまなニーズに応じた材料の微細組織設計が求められます。当研究室では、最先端の電子顕微鏡法や計算機シミュレーション等のさまざまな解析手法を用いて、材料機能・特性と微細組織の関わりを明らかにし、より高度な材料開発への指針を得る研究を行っています。特に、超強力磁石材料、機能性金属材料、半導体薄膜材料などの先端機能材料を中心に、ミリからナノまでの広範なマルチスケール電顕解析を行って、低炭素化社会の実現に貢献する研究に取り組んでいます。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●マルチスケール電子顕微鏡観察による高性能ネオジム磁石の微細構造解析
●収差補正 STEM を用いた新規 PLD 積層膜磁石の微細構造解析
●最新走査電子顕微鏡法による磁性体・誘電体ドメイン構造解析
●チタン合金のオメガ相変態機構の解明


[I類] 新素材開発工学研究室

材料理工学メジャー


教授 徐超男 (Chao-Nan XU) , 教授 山田浩志 , 准教授 上原雅人,  
研究室サイトへ

IoT(Internet of Things)社会では人間が生活するフィジカル空間で生じるさまざまなイベントをセンシング・情報化し、サイバー空間へつなぐことが求められている。当研究室では応力発光体や窒化物圧電体など、 IoT 技術でセンシングのキーとなる機能性材料の設計・開発から最先端計測器を利用した材料評価、計算機シミュレーションによる物性解明と新しい機能デバイスの創製を目指した研究に取り組んでいる。最終的に開発した技術を産業界 に技術移転することを目指している。


●応力発光体や窒化物圧電体など機能性材料の設計と機構解明
●応力発光体を利用した新規な計測 ・ 診断技術の開発
●計算機シミュレーションを利用した物性解明


[I類] 機能有機材料化学研究室

化学・物質理工学メジャー


准教授 藤田克彦,  
研究室サイトへ

有機EL ・ 有機トランジスタなどの高機能有機デバイス開発を実施している 。 有機半導体材料 、 デバイス作製プロセス 、 デバイス動作機構の 3 方向から多角的に高性能化指針の解明を行っており 、 特に有機半導体の利点である塗布による素子作成 、 プリンテッドエレクトロニクスに注力している 。 独自技術による塗布でのn型ドーピング法を確立し 、 キャリアドーピングの基礎物性の解明とともに 、 新規pn接合デバイスの開発を進めている 。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●キャリアドープ pn 接合デバイスの開発
●高効率塗布型有機 EL の材料開発
●有機太陽電池の高効率化


[I類] 分子計測学研究室

化学・物質理工学メジャー


教授 原田明 , 准教授 薮下彰啓 , 助教 石岡寿雄,  
研究室サイトへ

最先端の研究データを取得するためには,新しい分析法の開発は必要不可欠である。本研究室は,分子の構造・反応・機能を研究するための新しい計測法を創案・開発し,物質科学に関連して社会的に問題となっている諸問題解 決への応用を念頭に,基礎科学的に興味深い諸課題の解明にも携わることを目的としている。特に,レーザー光・シンクロトロン光を活用した分子の新しい分光学的計測法を開拓し,基礎的な分析化学・物理化学から,環境化学・生 化学・宇宙化学まで広く応用展開している。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●レーザー光やシンクロトロン光の照射で生じる”熱・イオン・蛍光・高調波”等を利用した超高感度・高精度計測法の開発
●分子鋳型電極を用いた分子分析法の開発
●水,氷面などの微小・極限環境内での分子挙動,生体内・環境中における諸科学現象の解明


[I類] 化学反応工学研究室

材料理工学メジャー


教授 林潤一郎 , 准教授 工藤真二 , 助教 浅野周作,  
研究室サイトへ

現代社会に欠かせないエネルギーや様々な化学品は化石資源を利用して作られている。いずれ化石資源が使えなくなることを想定し,かつ環境問題も考慮し,唯一の豊富な代替資源であるバイオマスを原料とする、あるいは他の代替可能な手段による多様な技術の開発をしておくことは人類にとって重要である。本研究室では、カーボンニュートラル・ネガティブ社会の実現に貢献するバイオマスなど炭素系資源および金属系資源の転換を含む化学プロセスの開発を目指して、化学工学、反応工学、触媒工学を基礎とする研究を行っている。

本研究室は、高専連携教育プログラムのインターシップ対応の研究室です。申込や質問等に関しては、ブックマーク後、ブックマークリストより、研究室オンライン面談フォームからお問い合わせください。


●バイオマスなど炭素資源ベースの分散型スマート・グリーン化学システムおよび反応・反応器・触媒開発
●CO2ニュートラル/ネガティブを実現する炭素資源からの電力・化学コプロダクションおよびクリーン製鉄
●マイクロリアクター・ロボティックリアクターシステム


[I類] 機能物性評価学研究室

材料理工学メジャー


教授 大橋直樹 , 教授 高田和典 , 准教授 坂口勲 , 准教授 原徹,  
研究室サイトへ

無機材料の結晶構造 、 化学組成 、 それに由来 する電子状態を設計 ・ 制御し 、 さらに 、 セラミッ クスや薄膜材料中での不純物や欠陥の振る舞 い 、 界面状態の理解と機能化を図ることによっ て 、 先端的な光 ・ 電子機能 発光材料 、 半導体素 子材料 、 センサー等 材料や2次電池材料の実 現を目指している 。 そのため 、 固体物性 、 固体 化学などを基礎とし 、 結晶合成や薄膜堆積な どの結晶成長に関わる開発研究と 、 高分解能 電子顕微鏡やナノ領域の化学組成分析装置な どを駆使した材料評価とを推進している 。 本講座の学生は 、 つくば市所在の国立研究開 発法人 物質 ・ 材料研究機構にて研究を行う 。


●センサ 、 発光素子等の電子素子の高機能化を目指したオプトエレクトロニクス材料の開発
●高性能二次電池の開発を目指した新しい固体電解質などのイオニクス材料の開発
●電子顕微鏡やイオンビーム技術 、 電子分光などを活用した材料評価と電子構造解析


[I類] 高エネルギー極限物性学研究室

材料理工学メジャー


准教授 渡邉英雄 , 助教 大澤一人,  
研究室サイトへ

原子炉や核融合炉等は、 高エネルギーの中性子や各種イオンが降り注ぐ環境にある 。 ここで使用する構造材料や各種の機能性材料に与えられる影響を高精度の材料分析手法により 、原子レベルで捉えることによって その背後にひそむ物理メカニズムを研究する 。 更にその成果を指針としてこのような環境に耐える新材料の開発を目指す 。
核融合炉プラズマ対抗材料(W) 中おける水素と照射による導入された格子欠陥との相互作用に関するシミュレーション計算 。


●金属材料の中性子照射損傷
●軽水炉及び新型炉材料の安全研究 ・ 開発
●プラズマ対抗材料 W) 中の水素や格子欠陥


[I類] KOINEプロジェクト部門研究室

材料理工学メジャー


教授 原田裕一,  
研究室サイトへ

KOINE とは略語(Kyudai global Open Innovation Network Engine) であるが、ギリシャ語由来の英単語でもあり、 「共通認識」の意味を持つ。すなわち、産学官 民の多様な学識・経験を持つメンバーで自由 闊達な議論の中から、地域課題や産業課題を 解決する新たなアイデアを創出することが、 KOINEのオープンイノベーションとしての核 心である。アイデアの概念検証(PoC)研究に おいては、ナノレベルでの物質状態を量子情 報の物理的概念で理解し、ナノテクノロジー の手法を活用した素子設計や理論研究により、 学際的な国際産学官共同研究を進めている。


●量子コンピューター要素素子である超伝導領事ビットを含む超伝導量子回路
●ナノレベルでの冷却・解凍技術の探究と、そのバイオ・食品応用
●ミリ波フォトン量子情報処理


研究室・教員一覧 

九州大学 工学部 融合基礎工学科

“工学系分野の融合”ד情報科学”を基軸とし、広い視野と実践的な行動力をもったAI時代のリーダーを創出


キャンパスアジア EEST

エネルギー環境理工学グローバル人材育成のための大学院協働教育プログラム


EVERGREEN

Joint Journal of Novel Carbon Resource Sciences and Green Asia Strategy


IEICES

Annual International Exchange and Innovation Conference on Engineering & Sciences